【机器学习300问】70、向量化技术来计算神经网络时维度如何确保正确?

一、向量化技术在进行神经网络计算时的优势

向量化是一种优化技术,通过使用数组操作代替for循环,可以大大提高代码的性能和效率。在深度学习中尤其明显,可以提高计算效率、简化代码、优化内存使用。

二、如何确保计算时维度是正确的?

(1)先回顾一下神经网络的计算

用简单的逻辑回归来举例,用圆圈表示神经网络的计算单元,逻辑回归的计算有两个步骤:

  1. 首先你按步骤计算出
  2. 然后通过激活函数g计算出a

一个神经网络只是这样子重复做了好多次计算。

以一个两层的神经网络为例:

它的第一层计算公式如下:

(2)权重矩阵的维度

对于权重矩阵的维度而言:

  • 行维度是神经网络第层节点的个数
  • 列维度是前一层节点的个数

举例说明:对于第一层权重矩阵来说,它的前一层是输出层,所以输出层节点的个数是特征的数量。如下图

(3)输入矩阵的维度

如果输入的是一个样本,那么还不能叫做输入矩阵,还只是输入列向量

如果输入的是训练集(个样本),此时就能称为输入矩阵。

对于输入矩阵也写作而言:

  • 行维度是特征的数量;
  • 列维度是样本的数量;

(4)各层输出矩阵的维度

如果只有一个样本,那么各层的输出也只是一个列向量

如果有个样本参与训练,那么此时就能成为输出矩阵

  • 行的维度是第层节点的个数
  • 列的维度是训练样本的个数

(5)偏置列向量的维度

偏置是一个列向量,它在参与计算的时候会通过python的广播机制,变成一个矩阵。

对于第层偏置列向量而言,它的维度是

相关推荐
破晓之翼4 分钟前
从第一性原理和工程控制论角度企业去思考AI开发避免完美主义陷阱
人工智能
njsgcs7 分钟前
屏幕元素定位(Grounding) ollama两个模型
人工智能
码农杂谈000715 分钟前
企业 AI 推理:告别黑箱决策,4 步构建可解释 AI 体系
大数据·人工智能
LaughingZhu15 分钟前
Product Hunt 每日热榜 | 2026-02-18
大数据·数据库·人工智能·经验分享·搜索引擎
量子-Alex1 小时前
【大模型思维链】COT、COT-SC、TOT和RAP四篇经典工作对比分析
人工智能·深度学习·机器学习
分享牛1 小时前
大模型结合BPMN语言,下一代BPM产品的雏形
人工智能·搜索引擎·llm·bpmn
MoonOutCloudBack1 小时前
VeRL 框架下 RL 微调 DeepSeek-7B,比较 PPO / GRPO 脚本的参数差异
人工智能·深度学习·算法·语言模型·自然语言处理
量子-Alex2 小时前
【大模型智能体】Agent-as-a-Judge
人工智能
AI架构全栈开发实战笔记2 小时前
AI应用架构师教你:如何用AI自动化数据仓库的测试?
数据仓库·人工智能·ai·自动化
罗技1232 小时前
RK3566嵌入式开发板运行Coco AI sever
人工智能