【机器学习300问】70、向量化技术来计算神经网络时维度如何确保正确?

一、向量化技术在进行神经网络计算时的优势

向量化是一种优化技术,通过使用数组操作代替for循环,可以大大提高代码的性能和效率。在深度学习中尤其明显,可以提高计算效率、简化代码、优化内存使用。

二、如何确保计算时维度是正确的?

(1)先回顾一下神经网络的计算

用简单的逻辑回归来举例,用圆圈表示神经网络的计算单元,逻辑回归的计算有两个步骤:

  1. 首先你按步骤计算出
  2. 然后通过激活函数g计算出a

一个神经网络只是这样子重复做了好多次计算。

以一个两层的神经网络为例:

它的第一层计算公式如下:

(2)权重矩阵的维度

对于权重矩阵的维度而言:

  • 行维度是神经网络第层节点的个数
  • 列维度是前一层节点的个数

举例说明:对于第一层权重矩阵来说,它的前一层是输出层,所以输出层节点的个数是特征的数量。如下图

(3)输入矩阵的维度

如果输入的是一个样本,那么还不能叫做输入矩阵,还只是输入列向量

如果输入的是训练集(个样本),此时就能称为输入矩阵。

对于输入矩阵也写作而言:

  • 行维度是特征的数量;
  • 列维度是样本的数量;

(4)各层输出矩阵的维度

如果只有一个样本,那么各层的输出也只是一个列向量

如果有个样本参与训练,那么此时就能成为输出矩阵

  • 行的维度是第层节点的个数
  • 列的维度是训练样本的个数

(5)偏置列向量的维度

偏置是一个列向量,它在参与计算的时候会通过python的广播机制,变成一个矩阵。

对于第层偏置列向量而言,它的维度是

相关推荐
qy-ll10 小时前
遥感论文学习
人工智能·深度学习·计算机视觉·gan·遥感·栅格化
G311354227310 小时前
深度学习中适合长期租用的高性价比便宜的GPU云服务器有哪些?
服务器·人工智能·深度学习
掘金安东尼10 小时前
文心 5.0:原生全模态时代的技术分水岭
人工智能
徽44010 小时前
YOLOv5植物模型开发综述
人工智能·目标检测·计算机视觉
徐行tag10 小时前
RLS(递归最小二乘)算法详解
人工智能·算法·机器学习
阿里云云原生11 小时前
阿里云 FunctionAI 技术详解:基于 Serverless 的企业级 AI 原生应用基础设施构建
人工智能·阿里云·serverless
感智教育11 小时前
2025 年世界职业院校技能大赛汽车制造与维修赛道备赛方案
人工智能·汽车·制造
8Qi811 小时前
Stable Diffusion详解
人工智能·深度学习·stable diffusion·图像生成
激动的小非11 小时前
电商数据分析报告
大数据·人工智能·数据分析
ChoSeitaku11 小时前
线代强化NO6|矩阵|例题|小结
算法·机器学习·矩阵