【机器学习300问】70、向量化技术来计算神经网络时维度如何确保正确?

一、向量化技术在进行神经网络计算时的优势

向量化是一种优化技术,通过使用数组操作代替for循环,可以大大提高代码的性能和效率。在深度学习中尤其明显,可以提高计算效率、简化代码、优化内存使用。

二、如何确保计算时维度是正确的?

(1)先回顾一下神经网络的计算

用简单的逻辑回归来举例,用圆圈表示神经网络的计算单元,逻辑回归的计算有两个步骤:

  1. 首先你按步骤计算出
  2. 然后通过激活函数g计算出a

一个神经网络只是这样子重复做了好多次计算。

以一个两层的神经网络为例:

它的第一层计算公式如下:

(2)权重矩阵的维度

对于权重矩阵的维度而言:

  • 行维度是神经网络第层节点的个数
  • 列维度是前一层节点的个数

举例说明:对于第一层权重矩阵来说,它的前一层是输出层,所以输出层节点的个数是特征的数量。如下图

(3)输入矩阵的维度

如果输入的是一个样本,那么还不能叫做输入矩阵,还只是输入列向量

如果输入的是训练集(个样本),此时就能称为输入矩阵。

对于输入矩阵也写作而言:

  • 行维度是特征的数量;
  • 列维度是样本的数量;

(4)各层输出矩阵的维度

如果只有一个样本,那么各层的输出也只是一个列向量

如果有个样本参与训练,那么此时就能成为输出矩阵

  • 行的维度是第层节点的个数
  • 列的维度是训练样本的个数

(5)偏置列向量的维度

偏置是一个列向量,它在参与计算的时候会通过python的广播机制,变成一个矩阵。

对于第层偏置列向量而言,它的维度是

相关推荐
yiersansiwu123d3 小时前
AI伦理治理:在创新与规范之间寻找平衡之道
人工智能
程途拾光1584 小时前
AI 生成内容的伦理边界:深度伪造与信息真实性的保卫战
人工智能
趣味科技v4 小时前
亚马逊云科技储瑞松:AI智能体正在重塑未来工作模式
人工智能·科技
GEO AI搜索优化助手4 小时前
GEO生态重构:生成式引擎优化如何重塑信息传播链
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
爱笑的眼睛114 小时前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
江上鹤.1484 小时前
Day40 复习日
人工智能·深度学习·机器学习
QYZL_AIGC4 小时前
全域众链以需求为基、政策为翼,创AI + 实体的可行之路
人工智能
火星资讯4 小时前
Zenlayer AI Gateway 登陆 Dify 市场,轻装上阵搭建 AI Agent
大数据·人工智能
TextIn智能文档云平台4 小时前
LLM处理非结构化文档有哪些痛点
人工智能·文档解析
Coder_Boy_4 小时前
DDD从0到企业级:迭代式学习 (共17章)之 四
java·人工智能·驱动开发·学习