【机器学习300问】70、向量化技术来计算神经网络时维度如何确保正确?

一、向量化技术在进行神经网络计算时的优势

向量化是一种优化技术,通过使用数组操作代替for循环,可以大大提高代码的性能和效率。在深度学习中尤其明显,可以提高计算效率、简化代码、优化内存使用。

二、如何确保计算时维度是正确的?

(1)先回顾一下神经网络的计算

用简单的逻辑回归来举例,用圆圈表示神经网络的计算单元,逻辑回归的计算有两个步骤:

  1. 首先你按步骤计算出
  2. 然后通过激活函数g计算出a

一个神经网络只是这样子重复做了好多次计算。

以一个两层的神经网络为例:

它的第一层计算公式如下:

(2)权重矩阵的维度

对于权重矩阵的维度而言:

  • 行维度是神经网络第层节点的个数
  • 列维度是前一层节点的个数

举例说明:对于第一层权重矩阵来说,它的前一层是输出层,所以输出层节点的个数是特征的数量。如下图

(3)输入矩阵的维度

如果输入的是一个样本,那么还不能叫做输入矩阵,还只是输入列向量

如果输入的是训练集(个样本),此时就能称为输入矩阵。

对于输入矩阵也写作而言:

  • 行维度是特征的数量;
  • 列维度是样本的数量;

(4)各层输出矩阵的维度

如果只有一个样本,那么各层的输出也只是一个列向量

如果有个样本参与训练,那么此时就能成为输出矩阵

  • 行的维度是第层节点的个数
  • 列的维度是训练样本的个数

(5)偏置列向量的维度

偏置是一个列向量,它在参与计算的时候会通过python的广播机制,变成一个矩阵。

对于第层偏置列向量而言,它的维度是

相关推荐
乾元1 小时前
LLM 自动生成安全基线与等保合规初稿——把“网络工程事实”转译为“可审计的制度语言”
运维·网络·人工智能·python·安全·架构
Das11 小时前
【计算机视觉】05_不变性
人工智能·计算机视觉
全栈陈序员1 小时前
【Python】基础语法入门(二十四)——文件与目录操作进阶:安全、高效地处理本地数据
开发语言·人工智能·python·学习
跨境卫士情报站1 小时前
摆脱砍单魔咒!Temu 自养号系统化采购,低成本高安全
大数据·人工智能·安全·跨境电商·亚马逊·防关联
OAK中国_官方1 小时前
将Roboflow工作流引入OAK4:简化实时计算机视觉
人工智能·计算机视觉
吴爃1 小时前
N8N调用系统接口进行AI分析
运维·人工智能·ai
老鱼说AI1 小时前
经典论文精读第一期:DeepSeek-R1-Zero ——RL奇迹
人工智能·分布式·深度学习·神经网络·自然语言处理·nlp·transformer
思通数据1 小时前
市政道路无人机巡检:AI视觉技术的应用与挑战
人工智能·深度学习·安全·目标检测·机器学习·无人机·语音识别
serve the people1 小时前
tensorflow tf.nn.softmax 核心解析
人工智能·python·tensorflow
AI营销实验室1 小时前
AI CRM系统升级,原圈科技赋能销冠复制
大数据·人工智能