【机器学习300问】70、向量化技术来计算神经网络时维度如何确保正确?

一、向量化技术在进行神经网络计算时的优势

向量化是一种优化技术,通过使用数组操作代替for循环,可以大大提高代码的性能和效率。在深度学习中尤其明显,可以提高计算效率、简化代码、优化内存使用。

二、如何确保计算时维度是正确的?

(1)先回顾一下神经网络的计算

用简单的逻辑回归来举例,用圆圈表示神经网络的计算单元,逻辑回归的计算有两个步骤:

  1. 首先你按步骤计算出
  2. 然后通过激活函数g计算出a

一个神经网络只是这样子重复做了好多次计算。

以一个两层的神经网络为例:

它的第一层计算公式如下:

(2)权重矩阵的维度

对于权重矩阵的维度而言:

  • 行维度是神经网络第层节点的个数
  • 列维度是前一层节点的个数

举例说明:对于第一层权重矩阵来说,它的前一层是输出层,所以输出层节点的个数是特征的数量。如下图

(3)输入矩阵的维度

如果输入的是一个样本,那么还不能叫做输入矩阵,还只是输入列向量

如果输入的是训练集(个样本),此时就能称为输入矩阵。

对于输入矩阵也写作而言:

  • 行维度是特征的数量;
  • 列维度是样本的数量;

(4)各层输出矩阵的维度

如果只有一个样本,那么各层的输出也只是一个列向量

如果有个样本参与训练,那么此时就能成为输出矩阵

  • 行的维度是第层节点的个数
  • 列的维度是训练样本的个数

(5)偏置列向量的维度

偏置是一个列向量,它在参与计算的时候会通过python的广播机制,变成一个矩阵。

对于第层偏置列向量而言,它的维度是

相关推荐
二向箔reverse几秒前
神经网络中的批归一化(BatchNorm)
人工智能·深度学习·神经网络
就不爱吃大米饭几秒前
4G5G 移动代理实战:什么时候必须用移动 IP?
人工智能
蒋星熠8 分钟前
基于深度学习的卫星图像分类(Kaggle比赛实战)
人工智能·python·深度学习·机器学习·分类·数据挖掘
IT_陈寒17 分钟前
JavaScript 性能优化的 7 个致命陷阱:我从 P5 到 P8 的核心突破都在这里!
前端·人工智能·后端
Dongsheng_201917 分钟前
【汽车篇】AI深度学习在汽车轮胎X-ray缺陷检测应用方案
人工智能·深度学习·汽车
IT古董22 分钟前
【第五章:计算机视觉-计算机视觉在工业制造领域中的应用】1.工业缺陷分割-(3)基于BiseNet算法的工业缺陷分割实战:数据读取、模型搭建、训练与测试
人工智能·计算机视觉·制造
放羊郎30 分钟前
基于RTAB-Map和RRT的自主导航方案
人工智能·数码相机·计算机视觉
科学创新前沿34 分钟前
机器学习催化剂设计专题学习
python·学习·机器学习·催化剂·催化剂设计
从零开始学习人工智能2 小时前
GPUStack:开源GPU集群管理工具,解锁AI模型高效运行新可能
人工智能·开源
C嘎嘎嵌入式开发3 小时前
(六)机器学习之图卷积网络
人工智能·python·机器学习