【机器学习300问】70、向量化技术来计算神经网络时维度如何确保正确?

一、向量化技术在进行神经网络计算时的优势

向量化是一种优化技术,通过使用数组操作代替for循环,可以大大提高代码的性能和效率。在深度学习中尤其明显,可以提高计算效率、简化代码、优化内存使用。

二、如何确保计算时维度是正确的?

(1)先回顾一下神经网络的计算

用简单的逻辑回归来举例,用圆圈表示神经网络的计算单元,逻辑回归的计算有两个步骤:

  1. 首先你按步骤计算出
  2. 然后通过激活函数g计算出a

一个神经网络只是这样子重复做了好多次计算。

以一个两层的神经网络为例:

它的第一层计算公式如下:

(2)权重矩阵的维度

对于权重矩阵的维度而言:

  • 行维度是神经网络第层节点的个数
  • 列维度是前一层节点的个数

举例说明:对于第一层权重矩阵来说,它的前一层是输出层,所以输出层节点的个数是特征的数量。如下图

(3)输入矩阵的维度

如果输入的是一个样本,那么还不能叫做输入矩阵,还只是输入列向量

如果输入的是训练集(个样本),此时就能称为输入矩阵。

对于输入矩阵也写作而言:

  • 行维度是特征的数量;
  • 列维度是样本的数量;

(4)各层输出矩阵的维度

如果只有一个样本,那么各层的输出也只是一个列向量

如果有个样本参与训练,那么此时就能成为输出矩阵

  • 行的维度是第层节点的个数
  • 列的维度是训练样本的个数

(5)偏置列向量的维度

偏置是一个列向量,它在参与计算的时候会通过python的广播机制,变成一个矩阵。

对于第层偏置列向量而言,它的维度是

相关推荐
jndingxin15 分钟前
OpenCV 图形API(14)用于执行矩阵(或图像)与一个标量值的逐元素乘法操作函数mulC()
人工智能·opencv
晓13131 小时前
第七章 Python基础进阶-异常、模块与包(其五)
人工智能·python
Swift社区1 小时前
AI+自动化测试:如何让测试编写效率提升10倍?
人工智能
呵呵哒( ̄▽ ̄)"1 小时前
线性代数:分块矩阵,秩,齐次线性,非齐次线性的解相关经典例题
线性代数·机器学习·矩阵
weixin_442424031 小时前
Opencv计算机视觉编程攻略-第九节 描述和匹配兴趣点
人工智能·opencv·计算机视觉
thinkMoreAndDoMore2 小时前
深度学习处理文本(5)
人工智能·python·深度学习
AI_Echoes2 小时前
检索增强生成(RAG) 优化策略篇
人工智能
congregalis2 小时前
跳出框架:一步步实现简易Deep Search Agent
人工智能·程序员·源码
weixin_750335522 小时前
李沐 X 动手学深度学习--第九章 现代循环神经网络
人工智能·rnn·深度学习
摸鱼仙人~2 小时前
深度学习数据集划分比例多少合适
人工智能·深度学习