stable diffusion本地部署教程

Stable Diffusion是一种生成模型,用于根据给定的文本输入生成图像。要在本地部署Stable Diffusion,您需要完成以下步骤:

  1. 安装依赖项 首先,确保您的计算机上已安装了Python(推荐使用3.8或更高版本)和pip。然后,安装以下依赖项:

    pip install torch torchvision

  2. 获取预训练模型

从GitHub或其他可靠来源下载预训练的Stable Diffusion模型文件(.pth或.pt)。将模型文件放在一个方便访问的目录中。

  1. 编写代码

创建一个名为stable_diffusion.py的Python文件,并添加以下代码:

import argparse
import os
import torch
from torchvision import transforms
from PIL import Image

def load_model(model_path):
    model = torch.load(model_path)
    model.eval()
    return model

def generate_image(intent, parameters, width, height, ratio=1):
    transform = transforms.Compose([
        transforms.Resize((width // ratio, height)),
        transforms.ToTensor(),
    ])

    if intent == "TTI":
        input_text = parameters["content"]
        width_height = (width, height)
    elif intent == "TTI+TTI":
        input_text = parameters["content"]
        width_height = (parameters["width"], parameters["height"])
    elif intent == "TTI+TTI+TTI":
        input_text = parameters["content"] + ", " + parameters["width"] + ", " + parameters["height"]
        width_height = (parameters["width"], parameters["height"])

    input_tensor = transform(Image.new("RGB", (width, height)))
    output = model.generate(input_text, input_tensor, width_height)
    return output

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", required=True, help="Path to the pretrained model")
    parser.add_argument("--intent", required=True, choices=["TTI", "TTI+TTI", "TTI+TTI+TTI"], help="Generation intent")
    parser.add_argument("--parameters", required=True, type=str, help="Parameters for the generation")
    parser.add_argument("--width", type=int, default=512, help="Output image width")
    parser.add_argument("--height", type=int, default=512, help="Output image height")
    parser.add_argument("--ratio", type=float, default=1, help="Aspect ratio of the output image")

    args = parser.parse_args()

    model = load_model(args.model)
    output = generate_image(args.intent, args.parameters, args.width, args.height, args.ratio)
    output.save("output.png")
  1. 运行代码 在命令行中,导航到包含stable_diffusion.py文件的目录。然后,使用以下命令运行代码,将<model_path>替换为预训练模型文件的实际路径:
python 复制代码
python stable_diffusion.py --model <model_path> --intent TTI --parameters "content:<your_content>" --width 512 --height 512 --ratio 1

<your_content>替换为您想要生成的图像的描述。例如,要生成一张描绘"一只猫坐在沙发上"的图像,您可以使用content:"a cat sitting on a sofa"

这将在当前目录下生成一个名为output.png的图像文件。您可以根据需要调整输出图像的宽度、高度和比例。

相关推荐
跃跃欲试-迪之9 小时前
animatediff 模型网盘分享
人工智能·stable diffusion
web150850966411 天前
Stable Diffusion WebUI Two Shot 项目常见问题解决方案
stable diffusion
Jeremy_lf1 天前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型
minos.cpp3 天前
Mac上Stable Diffusion的环境搭建(还算比较简单)
macos·ai作画·stable diffusion·aigc
不当菜鸡的程序媛5 天前
Stable Diffusion模型微调LORA及其变种介绍
stable diffusion
AIGC安琪5 天前
只需3步,使用Stable Diffusion无限生成AI数字人视频
人工智能·stable diffusion·数字人·sd·sd教程
AI绘画咪酱6 天前
【AIGC】ComfyUI 入门教程(4):ComfyUI 管理器|AI 生成图片
人工智能·stable diffusion·aigc
我算是程序猿6 天前
Stable Diffusion4.9.0(Ai绘画)安装教程
人工智能·ai作画·stable diffusion·aigc
AI绘画君6 天前
Stable Diffusion【二次元模型】:最受欢迎的通用二次元大模型AWPainting
linux·服务器·人工智能·ai作画·stable diffusion
不秃头de程序猿6 天前
AI绘画Stable Diffusion ,3种方法精确控制人物姿势,总有一种适合你!
大数据·人工智能·ai作画·stable diffusion·aigc·sd