stable diffusion本地部署教程

Stable Diffusion是一种生成模型,用于根据给定的文本输入生成图像。要在本地部署Stable Diffusion,您需要完成以下步骤:

  1. 安装依赖项 首先,确保您的计算机上已安装了Python(推荐使用3.8或更高版本)和pip。然后,安装以下依赖项:

    pip install torch torchvision

  2. 获取预训练模型

从GitHub或其他可靠来源下载预训练的Stable Diffusion模型文件(.pth或.pt)。将模型文件放在一个方便访问的目录中。

  1. 编写代码

创建一个名为stable_diffusion.py的Python文件,并添加以下代码:

复制代码
import argparse
import os
import torch
from torchvision import transforms
from PIL import Image

def load_model(model_path):
    model = torch.load(model_path)
    model.eval()
    return model

def generate_image(intent, parameters, width, height, ratio=1):
    transform = transforms.Compose([
        transforms.Resize((width // ratio, height)),
        transforms.ToTensor(),
    ])

    if intent == "TTI":
        input_text = parameters["content"]
        width_height = (width, height)
    elif intent == "TTI+TTI":
        input_text = parameters["content"]
        width_height = (parameters["width"], parameters["height"])
    elif intent == "TTI+TTI+TTI":
        input_text = parameters["content"] + ", " + parameters["width"] + ", " + parameters["height"]
        width_height = (parameters["width"], parameters["height"])

    input_tensor = transform(Image.new("RGB", (width, height)))
    output = model.generate(input_text, input_tensor, width_height)
    return output

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", required=True, help="Path to the pretrained model")
    parser.add_argument("--intent", required=True, choices=["TTI", "TTI+TTI", "TTI+TTI+TTI"], help="Generation intent")
    parser.add_argument("--parameters", required=True, type=str, help="Parameters for the generation")
    parser.add_argument("--width", type=int, default=512, help="Output image width")
    parser.add_argument("--height", type=int, default=512, help="Output image height")
    parser.add_argument("--ratio", type=float, default=1, help="Aspect ratio of the output image")

    args = parser.parse_args()

    model = load_model(args.model)
    output = generate_image(args.intent, args.parameters, args.width, args.height, args.ratio)
    output.save("output.png")
  1. 运行代码 在命令行中,导航到包含stable_diffusion.py文件的目录。然后,使用以下命令运行代码,将<model_path>替换为预训练模型文件的实际路径:
python 复制代码
python stable_diffusion.py --model <model_path> --intent TTI --parameters "content:<your_content>" --width 512 --height 512 --ratio 1

<your_content>替换为您想要生成的图像的描述。例如,要生成一张描绘"一只猫坐在沙发上"的图像,您可以使用content:"a cat sitting on a sofa"

这将在当前目录下生成一个名为output.png的图像文件。您可以根据需要调整输出图像的宽度、高度和比例。

相关推荐
长不大的蜡笔小新13 小时前
基于Stable Diffusion的多模态图像生成与识别系统
stable diffusion
米汤爱学习21 小时前
stable-diffusion-webui【笔记】
笔记·stable diffusion
fantasy_arch1 天前
Transformer vs Stable Diffusion vs LLM模型对比
深度学习·stable diffusion·transformer
盼小辉丶1 天前
PyTorch实战——基于文本引导的图像生成技术与Stable Diffusion实践
pytorch·深度学习·stable diffusion·生成模型
Blossom.1181 天前
工业级扩散模型优化实战:从Stable Diffusion到LCM的毫秒级生成
开发语言·人工智能·python·深度学习·机器学习·stable diffusion·transformer
盼小辉丶2 天前
PyTorch实战(21)——扩散模型(Diffusion Model)
pytorch·深度学习·stable diffusion·生成模型
Tiger Shi3 天前
使用Qt调用stable-diffusion.cpp做一个客户端
人工智能·stable diffusion
byte轻骑兵3 天前
共绩算力 RTX 5090 极速部署 Stable Diffusion WebUI:新手也能秒开 AI 绘图工作站
人工智能·stable diffusion
伟大的大威4 天前
在 NVIDIA DGX Spark部署 Stable Diffusion 3.5 并使用ComfyUI
stable diffusion·spark·comfyui
迈火7 天前
APISR IN COMFYUI:提升ComfyUI图像超分辨率的强力插件
图像处理·人工智能·计算机视觉·stable diffusion·aigc·音视频·midjourney