stable diffusion本地部署教程

Stable Diffusion是一种生成模型,用于根据给定的文本输入生成图像。要在本地部署Stable Diffusion,您需要完成以下步骤:

  1. 安装依赖项 首先,确保您的计算机上已安装了Python(推荐使用3.8或更高版本)和pip。然后,安装以下依赖项:

    pip install torch torchvision

  2. 获取预训练模型

从GitHub或其他可靠来源下载预训练的Stable Diffusion模型文件(.pth或.pt)。将模型文件放在一个方便访问的目录中。

  1. 编写代码

创建一个名为stable_diffusion.py的Python文件,并添加以下代码:

import argparse
import os
import torch
from torchvision import transforms
from PIL import Image

def load_model(model_path):
    model = torch.load(model_path)
    model.eval()
    return model

def generate_image(intent, parameters, width, height, ratio=1):
    transform = transforms.Compose([
        transforms.Resize((width // ratio, height)),
        transforms.ToTensor(),
    ])

    if intent == "TTI":
        input_text = parameters["content"]
        width_height = (width, height)
    elif intent == "TTI+TTI":
        input_text = parameters["content"]
        width_height = (parameters["width"], parameters["height"])
    elif intent == "TTI+TTI+TTI":
        input_text = parameters["content"] + ", " + parameters["width"] + ", " + parameters["height"]
        width_height = (parameters["width"], parameters["height"])

    input_tensor = transform(Image.new("RGB", (width, height)))
    output = model.generate(input_text, input_tensor, width_height)
    return output

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", required=True, help="Path to the pretrained model")
    parser.add_argument("--intent", required=True, choices=["TTI", "TTI+TTI", "TTI+TTI+TTI"], help="Generation intent")
    parser.add_argument("--parameters", required=True, type=str, help="Parameters for the generation")
    parser.add_argument("--width", type=int, default=512, help="Output image width")
    parser.add_argument("--height", type=int, default=512, help="Output image height")
    parser.add_argument("--ratio", type=float, default=1, help="Aspect ratio of the output image")

    args = parser.parse_args()

    model = load_model(args.model)
    output = generate_image(args.intent, args.parameters, args.width, args.height, args.ratio)
    output.save("output.png")
  1. 运行代码 在命令行中,导航到包含stable_diffusion.py文件的目录。然后,使用以下命令运行代码,将<model_path>替换为预训练模型文件的实际路径:
python 复制代码
python stable_diffusion.py --model <model_path> --intent TTI --parameters "content:<your_content>" --width 512 --height 512 --ratio 1

<your_content>替换为您想要生成的图像的描述。例如,要生成一张描绘"一只猫坐在沙发上"的图像,您可以使用content:"a cat sitting on a sofa"

这将在当前目录下生成一个名为output.png的图像文件。您可以根据需要调整输出图像的宽度、高度和比例。

相关推荐
AI绘画小331 天前
【comfyui教程】comfyui古风一键线稿上色,效果还挺惊艳!
人工智能·ai作画·stable diffusion·aigc·comfyui
AI绘画月月1 天前
【comfyui教程】ComfyUI有趣工作流推荐:快速换脸,创意随手掌握!
人工智能·ai作画·stable diffusion·aigc·comfyui
AI绘画咪酱1 天前
【AI绘画】AI绘图教程|stable diffusion(SD)图生图涂鸦超详细攻略,教你快速上手
人工智能·ai作画·stable diffusion·aigc·midjourney
HuggingAI1 天前
stable diffusion 大模型
人工智能·ai·stable diffusion·ai绘画
HuggingAI2 天前
stable diffusion图生图
人工智能·ai·stable diffusion·ai绘画
HuggingAI2 天前
stable diffusion文生图
人工智能·stable diffusion·ai绘画
云端奇趣2 天前
Stable Diffusion 绘画技巧分享,适合新手小白的技巧分享
人工智能·stable diffusion
cskywit3 天前
Stable diffusion 3.5本地运行环境配置记录
stable diffusion
ai绘画-安安妮4 天前
视频号带货书籍,一天佣金1200+(附视频教程)
人工智能·stable diffusion·aigc
papapa键盘侠4 天前
Stable Diffusion Web UI 1.9.4常用插件扩展-WD14-tagger
前端·ui·stable diffusion