分类算法——文章分类(五)

文章分类计算

  • 计算结果
c 复制代码
P(C|Chinese,Chinese,Chinese,Tokyo,Japan)-->P(Chinese, Chinese, Chinese, Tokyo, Japan|C) * P(C)/P(Chinese, Chinese, Chinese, Tokyo, Japan)
P(Chinese|C)=5/8
P(Tokyo|C)= 0
P(Japan|C)= 0

思考:我们计算出来某个概率为0,合适吗?

4拉普拉斯平滑系数

目的:防止计算出的分类概率为0

c 复制代码
P(Chinese|C)=(5+1)/(8+1*6)=6/14=3/7
P(Tokyo|C)=(0+1)/(8+1*6)= 1/14
P(JapanC)=(0+1)/(8+1*6)=1/14

API

  • sklearn.naive_bayes.MultinomialNB(alpha=1.0)
    • 朴素贝叶斯分类
    • alpha:拉普拉斯平滑系数

案例:20类新闻分类


1 步骤分析

  • 进行数据集的分割
  • TFIDF进行的特征抽取
    • 将文章字符串进行单词抽取
  • 朴素贝叶斯预测

2代码


朴素贝叶斯算法总结

  • 优点:
    • 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
    • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
    • 分类准确度高,速度快。
  • 缺点:
    • 由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好。

总结

条件概率、联合概率计算方式与特征独立的关系

贝叶斯公式的计算

相关推荐
周名彥几秒前
### 天脑体系V∞·13824D完全体终极架构与全域落地研究报告 (生物计算与隐私计算融合版)
人工智能·神经网络·去中心化·量子计算·agi
MoonBit月兔27 分钟前
年终 Meetup:走进腾讯|AI 原生编程与 Code Agent 实战交流会
大数据·开发语言·人工智能·腾讯云·moonbit
大模型任我行1 小时前
人大:熵引导的LLM有限数据训练
人工智能·语言模型·自然语言处理·论文笔记
weixin_468466851 小时前
YOLOv13结合代码原理详细解析及模型安装与使用
人工智能·深度学习·yolo·计算机视觉·图像识别·目标识别·yolov13
蹦蹦跳跳真可爱5891 小时前
Python----大模型(GPT-2模型训练加速,训练策略)
人工智能·pytorch·python·gpt·embedding
xwill*1 小时前
π∗0.6: a VLA That Learns From Experience
人工智能·pytorch·python
jiayong231 小时前
知识库概念与核心价值01
java·人工智能·spring·知识库
雨轩剑1 小时前
做 AI 功能不难,难的是把 App 发布上架
人工智能·开源软件
Tezign_space2 小时前
AI智能体赋能实践:从提示工程到上下文工程的架构演进
人工智能·架构·agentic ai·上下文工程·大模型智能体·长程任务·模型注意力预算
..过云雨2 小时前
17-2.【Linux系统编程】线程同步详解 - 条件变量的理解及应用
linux·c++·人工智能·后端