分类算法——文章分类(五)

文章分类计算

  • 计算结果
c 复制代码
P(C|Chinese,Chinese,Chinese,Tokyo,Japan)-->P(Chinese, Chinese, Chinese, Tokyo, Japan|C) * P(C)/P(Chinese, Chinese, Chinese, Tokyo, Japan)
P(Chinese|C)=5/8
P(Tokyo|C)= 0
P(Japan|C)= 0

思考:我们计算出来某个概率为0,合适吗?

4拉普拉斯平滑系数

目的:防止计算出的分类概率为0

c 复制代码
P(Chinese|C)=(5+1)/(8+1*6)=6/14=3/7
P(Tokyo|C)=(0+1)/(8+1*6)= 1/14
P(JapanC)=(0+1)/(8+1*6)=1/14

API

  • sklearn.naive_bayes.MultinomialNB(alpha=1.0)
    • 朴素贝叶斯分类
    • alpha:拉普拉斯平滑系数

案例:20类新闻分类


1 步骤分析

  • 进行数据集的分割
  • TFIDF进行的特征抽取
    • 将文章字符串进行单词抽取
  • 朴素贝叶斯预测

2代码


朴素贝叶斯算法总结

  • 优点:
    • 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
    • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
    • 分类准确度高,速度快。
  • 缺点:
    • 由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好。

总结

条件概率、联合概率计算方式与特征独立的关系

贝叶斯公式的计算

相关推荐
InfiSight智睿视界2 分钟前
连锁店管理力不从心?让智能体接管30%重复工作
人工智能·智能巡检系统·ai巡检
围炉聊科技5 分钟前
国内AI智能眼镜开放平台全景解析:从SDK到生态建设
人工智能
golang学习记7 分钟前
Claude Code之父首次揭秘:13个CC独门AI编程使用技巧!
人工智能
狗狗学不会7 分钟前
视觉检测的新范式:从“像素感知”到“时序语义推理”—— 基于 Qwen3-VL 与时序拼图策略的通用事件检测系统
人工智能·计算机视觉·视觉检测
song1502653729813 分钟前
如何选择适合的AI视觉检测设备?
人工智能
FE_C_P小麦13 分钟前
AI Prompt 提示词模板【转载】
人工智能
桂花饼19 分钟前
量化双雄争霸:九坤 IQuest-Coder-V1 的技术突破
人工智能·aigc·nano banana 2·openai兼容接口·claude opus 4.5·sora2 pro
undsky_25 分钟前
【n8n教程】:RSS Feed Trigger节点,玩转RSS订阅自动化
人工智能·ai·aigc·ai编程
摘星编程29 分钟前
【RAG+LLM实战指南】如何用检索增强生成破解AI幻觉难题?
android·人工智能
人工智能培训30 分钟前
什么是马尔可夫决策过程(MDP)?马尔可夫性的核心含义是什么?
人工智能·深度学习·机器学习·cnn·智能体·马尔可夫决策