分类算法——文章分类(五)

文章分类计算

  • 计算结果
c 复制代码
P(C|Chinese,Chinese,Chinese,Tokyo,Japan)-->P(Chinese, Chinese, Chinese, Tokyo, Japan|C) * P(C)/P(Chinese, Chinese, Chinese, Tokyo, Japan)
P(Chinese|C)=5/8
P(Tokyo|C)= 0
P(Japan|C)= 0

思考:我们计算出来某个概率为0,合适吗?

4拉普拉斯平滑系数

目的:防止计算出的分类概率为0

c 复制代码
P(Chinese|C)=(5+1)/(8+1*6)=6/14=3/7
P(Tokyo|C)=(0+1)/(8+1*6)= 1/14
P(JapanC)=(0+1)/(8+1*6)=1/14

API

  • sklearn.naive_bayes.MultinomialNB(alpha=1.0)
    • 朴素贝叶斯分类
    • alpha:拉普拉斯平滑系数

案例:20类新闻分类


1 步骤分析

  • 进行数据集的分割
  • TFIDF进行的特征抽取
    • 将文章字符串进行单词抽取
  • 朴素贝叶斯预测

2代码


朴素贝叶斯算法总结

  • 优点:
    • 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
    • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
    • 分类准确度高,速度快。
  • 缺点:
    • 由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好。

总结

条件概率、联合概率计算方式与特征独立的关系

贝叶斯公式的计算

相关推荐
醉舞经阁半卷书13 分钟前
Python机器学习常用库快速精通
人工智能·python·深度学习·机器学习·数据挖掘·数据分析·scikit-learn
老徐电商数据笔记12 分钟前
BI工具与数据分析平台:数据价值呈现的最后一公里
数据库·数据挖掘·数据分析·bi·bi选型思考
产品何同学1 小时前
在线问诊医疗APP如何设计?2套原型拆解与AI生成原型图实战
人工智能·产品经理·健康医疗·在线问诊·app原型·ai生成原型图·医疗app
星爷AG I1 小时前
9-14 知觉整合(AGI基础理论)
人工智能·agi
开源技术1 小时前
Violit: Streamlit杀手,无需全局刷新,构建AI面板
人工智能·python
递归尽头是星辰1 小时前
大模型与向量检索的融合:从核心原理到 Spring AI 落地
人工智能·大模型·向量检索·rag·spring ai·向量库
gihigo19981 小时前
希尔伯特-黄变换(HHT)完整MATLAB实现
人工智能·算法·matlab
min1811234561 小时前
AI金融风控:智能反欺诈与个性化理财
大数据·人工智能
2013092416272 小时前
1982年霍普菲尔德网络奠基之作:深度导读与全景解析报告
人工智能
wanghao6664552 小时前
机器学习三大流派:监督、无监督与强化学习
人工智能·机器学习