分类算法——文章分类(五)

文章分类计算

  • 计算结果
c 复制代码
P(C|Chinese,Chinese,Chinese,Tokyo,Japan)-->P(Chinese, Chinese, Chinese, Tokyo, Japan|C) * P(C)/P(Chinese, Chinese, Chinese, Tokyo, Japan)
P(Chinese|C)=5/8
P(Tokyo|C)= 0
P(Japan|C)= 0

思考:我们计算出来某个概率为0,合适吗?

4拉普拉斯平滑系数

目的:防止计算出的分类概率为0

c 复制代码
P(Chinese|C)=(5+1)/(8+1*6)=6/14=3/7
P(Tokyo|C)=(0+1)/(8+1*6)= 1/14
P(JapanC)=(0+1)/(8+1*6)=1/14

API

  • sklearn.naive_bayes.MultinomialNB(alpha=1.0)
    • 朴素贝叶斯分类
    • alpha:拉普拉斯平滑系数

案例:20类新闻分类


1 步骤分析

  • 进行数据集的分割
  • TFIDF进行的特征抽取
    • 将文章字符串进行单词抽取
  • 朴素贝叶斯预测

2代码


朴素贝叶斯算法总结

  • 优点:
    • 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
    • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
    • 分类准确度高,速度快。
  • 缺点:
    • 由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好。

总结

条件概率、联合概率计算方式与特征独立的关系

贝叶斯公式的计算

相关推荐
yumgpkpm1 小时前
银行智能数据平台在Cloudera CDH6\CDP 7\CMP 7平台下的具体使用配置流程
大数据·hive·hadoop·数据挖掘·flink·spark·cloudera
KmjJgWeb6 小时前
工业零件检测与分类——基于YOLOv5的改进模型 Dysample 实现
yolo·分类·数据挖掘
康康的AI博客6 小时前
腾讯王炸:CodeMoment - 全球首个产设研一体 AI IDE
ide·人工智能
中达瑞和-高光谱·多光谱6 小时前
中达瑞和LCTF:精准调控光谱,赋能显微成像新突破
人工智能
mahtengdbb16 小时前
【目标检测实战】基于YOLOv8-DynamicHGNetV2的猪面部检测系统搭建与优化
人工智能·yolo·目标检测
Pyeako6 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
清 澜6 小时前
大模型面试400问第一部分第一章
人工智能·大模型·大模型面试
不大姐姐AI智能体7 小时前
搭了个小红书笔记自动生产线,一句话生成图文,一键发布,支持手机端、电脑端发布
人工智能·经验分享·笔记·矩阵·aigc
虹科网络安全7 小时前
艾体宝方案 | 释放数据潜能 · 构建 AI 驱动的自动驾驶实时数据处理与智能筛选平台
人工智能·机器学习·自动驾驶