分类算法——文章分类(五)

文章分类计算

  • 计算结果
c 复制代码
P(C|Chinese,Chinese,Chinese,Tokyo,Japan)-->P(Chinese, Chinese, Chinese, Tokyo, Japan|C) * P(C)/P(Chinese, Chinese, Chinese, Tokyo, Japan)
P(Chinese|C)=5/8
P(Tokyo|C)= 0
P(Japan|C)= 0

思考:我们计算出来某个概率为0,合适吗?

4拉普拉斯平滑系数

目的:防止计算出的分类概率为0

c 复制代码
P(Chinese|C)=(5+1)/(8+1*6)=6/14=3/7
P(Tokyo|C)=(0+1)/(8+1*6)= 1/14
P(JapanC)=(0+1)/(8+1*6)=1/14

API

  • sklearn.naive_bayes.MultinomialNB(alpha=1.0)
    • 朴素贝叶斯分类
    • alpha:拉普拉斯平滑系数

案例:20类新闻分类


1 步骤分析

  • 进行数据集的分割
  • TFIDF进行的特征抽取
    • 将文章字符串进行单词抽取
  • 朴素贝叶斯预测

2代码


朴素贝叶斯算法总结

  • 优点:
    • 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
    • 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
    • 分类准确度高,速度快。
  • 缺点:
    • 由于使用了样本属性独立性的假设,所以如果特征属性有关联时其效果不好。

总结

条件概率、联合概率计算方式与特征独立的关系

贝叶斯公式的计算

相关推荐
Rabbit_QL3 分钟前
【深度学习数学基础】01_基础统计学
人工智能·深度学习
m0_571186605 分钟前
第三十周周报
人工智能
绒绒毛毛雨13 分钟前
Advancing Table Understanding of Large Language Models via Feature Re-ordering
人工智能·语言模型·自然语言处理
Toky丶15 分钟前
【文献阅读】Optimum Quanto:量化工作流与数学公式整合笔记
人工智能·深度学习·机器学习
橙露16 分钟前
李一舟人工智能 2.0 视频分享:解锁 AI 时代核心竞争力
人工智能
Brian Xia17 分钟前
从 0 开始手写 AI Agent 框架:nano-agentscope(二)框架搭建
人工智能·python·ai
2503_9469718617 分钟前
【Virtualization/AGI】2026年度全沉浸式虚拟化架构与AGI沙箱逃逸基准索引 (Benchmark Index)
人工智能·网络安全·系统架构·数据集·元宇宙
易晨 微盛·企微管家23 分钟前
2026连锁品牌SCRM系统最新排名:企业微信生态下微盛·企微管家领跑
人工智能·企业微信
新知图书35 分钟前
FastGPT工作流的节点
人工智能·fastgpt·ai agent·智能体·大模型应用开发
乾元35 分钟前
网络切片的自动化配置与 SLA 保证——5G / 专网场景中,从“逻辑隔离”到“可验证承诺”的工程实现
运维·开发语言·网络·人工智能·网络协议·重构