AI降维算法

降维算法主要分为线性降维和非线性降维两种。

线性降维方法中,主成分分析(PCA)是最基础的无监督降维算法,其目标是将原有的n个特征投影到k维空间(k<n),新的特征由原特征线性变换而来,并且这些特征两两正交,称为主成分。

非线性降维方法则包括基于核函数的非线性降维方法,如核主成分分析(KPCA)、核独立成分分析(KICA)和核判别分析(KDA);以及基于特征值的非线性降维方法,如ISOMAP、局部线性嵌入(LLE)、拉普拉斯特征映射(LE)、局部保持投影(LPP)等。其中,t-SNE算法是一种优化后的SNE算法,通过用t分布取代SNE中的高斯分布,使得降维后的数据同类之间更加紧凑,不同类之间距离加大。

这些降维算法在机器学习和数据挖掘等领域有广泛应用,用于数据预处理、特征提取和可视化等方面。具体使用哪种降维算法,需要根据数据的特性和问题的需求来选择。

相关推荐
锋行天下43 分钟前
公司内网部署大模型的探索之路
前端·人工智能·后端
AI视觉网奇2 小时前
Fatal signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr
开发语言·c++·算法
ghie90902 小时前
ECG波形检查与分析系统
算法
智者知已应修善业2 小时前
【输入两个数字,判断两数相乘是否等于各自逆序数相乘】2023-10-24
c语言·c++·经验分享·笔记·算法·1024程序员节
Shingmc32 小时前
【Linux】进程控制
linux·服务器·算法
背心2块钱包邮2 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水3 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊3 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
湘-枫叶情缘3 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
小武~3 小时前
Leetcode 每日一题C 语言版 -- 45 jump game ii
c语言·算法·leetcode