AI降维算法

降维算法主要分为线性降维和非线性降维两种。

线性降维方法中,主成分分析(PCA)是最基础的无监督降维算法,其目标是将原有的n个特征投影到k维空间(k<n),新的特征由原特征线性变换而来,并且这些特征两两正交,称为主成分。

非线性降维方法则包括基于核函数的非线性降维方法,如核主成分分析(KPCA)、核独立成分分析(KICA)和核判别分析(KDA);以及基于特征值的非线性降维方法,如ISOMAP、局部线性嵌入(LLE)、拉普拉斯特征映射(LE)、局部保持投影(LPP)等。其中,t-SNE算法是一种优化后的SNE算法,通过用t分布取代SNE中的高斯分布,使得降维后的数据同类之间更加紧凑,不同类之间距离加大。

这些降维算法在机器学习和数据挖掘等领域有广泛应用,用于数据预处理、特征提取和可视化等方面。具体使用哪种降维算法,需要根据数据的特性和问题的需求来选择。

相关推荐
智算菩萨2 分钟前
高效多模态大语言模型:从统一框架到训练与推理效率的系统化理论梳理
大数据·人工智能·多模态
free-elcmacom11 分钟前
深度学习<4>高效模型架构与优化器的“效率革命”
人工智能·python·深度学习·机器学习·架构
liliangcsdn28 分钟前
python模拟beam search优化LLM输出过程
人工智能·python
算法与编程之美30 分钟前
深度学习任务中的多层卷积与全连接输出方法
人工智能·深度学习
Deepoch1 小时前
具身智能产业新范式:Deepoc开发板如何破解机器人智能化升级难题
人工智能·科技·机器人·开发板·具身模型·deepoc
浪子不回头4151 小时前
SGLang学习笔记
人工智能·笔记·学习
源代码•宸1 小时前
Leetcode—620. 有趣的电影&&Q3. 有趣的电影【简单】
数据库·后端·mysql·算法·leetcode·职场和发展
2301_800256111 小时前
地理空间数据库中的CPU 和 I/O 开销
数据库·算法·oracle
飞哥数智坊2 小时前
TRAE 国内版 SOLO 全放开
人工智能·ai编程·trae
落叶,听雪2 小时前
AI建站推荐
大数据·人工智能·python