AI降维算法

降维算法主要分为线性降维和非线性降维两种。

线性降维方法中,主成分分析(PCA)是最基础的无监督降维算法,其目标是将原有的n个特征投影到k维空间(k<n),新的特征由原特征线性变换而来,并且这些特征两两正交,称为主成分。

非线性降维方法则包括基于核函数的非线性降维方法,如核主成分分析(KPCA)、核独立成分分析(KICA)和核判别分析(KDA);以及基于特征值的非线性降维方法,如ISOMAP、局部线性嵌入(LLE)、拉普拉斯特征映射(LE)、局部保持投影(LPP)等。其中,t-SNE算法是一种优化后的SNE算法,通过用t分布取代SNE中的高斯分布,使得降维后的数据同类之间更加紧凑,不同类之间距离加大。

这些降维算法在机器学习和数据挖掘等领域有广泛应用,用于数据预处理、特征提取和可视化等方面。具体使用哪种降维算法,需要根据数据的特性和问题的需求来选择。

相关推荐
墨染点香2 分钟前
LeetCode 刷题【124. 二叉树中的最大路径和、125. 验证回文串】
算法·leetcode·职场和发展
Camel卡蒙2 分钟前
红黑树详细介绍(五大规则、保持平衡操作、Java实现)
java·开发语言·算法
武子康6 分钟前
AI-调查研究-106-具身智能 机器人学习数据采集工具和手段:传感器、API、遥操作、仿真与真人示教全流程
人工智能·深度学习·机器学习·ai·系统架构·机器人·具身智能
Python智慧行囊8 分钟前
图像处理-opencv(一)
人工智能·opencv·计算机视觉
AhriProGramming14 分钟前
Flask-SQLAlchemy精读-双语精选文章
python·算法·flask
StarPrayers.22 分钟前
损失函数(Loss Function)、反向传播(Backward Propagation)和优化器(Optimizer)学习笔记
人工智能·笔记·深度学习·学习
IT_陈寒26 分钟前
Vite 5个隐藏技巧让你的项目构建速度提升50%,第3个太香了!
前端·人工智能·后端
孤廖29 分钟前
吃透 C++ 栈和队列:stack/queue/priority_queue 用法 + 模拟 + STL 标准实现对比
java·开发语言·数据结构·c++·人工智能·深度学习·算法
麦麦麦造1 小时前
有了 MCP,为什么Claude 还要推出 Skills?
人工智能·aigc·ai编程
jerryinwuhan1 小时前
利用舵机实现机器人行走
人工智能·机器人