AI降维算法

降维算法主要分为线性降维和非线性降维两种。

线性降维方法中,主成分分析(PCA)是最基础的无监督降维算法,其目标是将原有的n个特征投影到k维空间(k<n),新的特征由原特征线性变换而来,并且这些特征两两正交,称为主成分。

非线性降维方法则包括基于核函数的非线性降维方法,如核主成分分析(KPCA)、核独立成分分析(KICA)和核判别分析(KDA);以及基于特征值的非线性降维方法,如ISOMAP、局部线性嵌入(LLE)、拉普拉斯特征映射(LE)、局部保持投影(LPP)等。其中,t-SNE算法是一种优化后的SNE算法,通过用t分布取代SNE中的高斯分布,使得降维后的数据同类之间更加紧凑,不同类之间距离加大。

这些降维算法在机器学习和数据挖掘等领域有广泛应用,用于数据预处理、特征提取和可视化等方面。具体使用哪种降维算法,需要根据数据的特性和问题的需求来选择。

相关推荐
星云数灵43 分钟前
大模型高级工程师考试练习题1
人工智能·大模型·大模型工程师·大模型考试题·大模型工程师练习题·大模型高频考题
草莓熊Lotso44 分钟前
Python 进阶核心:字典 / 文件操作 + 上下文管理器实战指南
数据结构·c++·人工智能·经验分享·笔记·git·python
乐迪信息3 小时前
乐迪信息:目标检测算法+AI摄像机:煤矿全场景识别方案
人工智能·物联网·算法·目标检测·目标跟踪·语音识别
学术小白人5 小时前
【EI会议征稿通知】2026年智能感知与自主控制国际学术会议(IPAC 2026)
人工智能·物联网·数据分析·区块链·能源
HyperAI超神经5 小时前
在线教程丨 David Baker 团队开源 RFdiffusion3,实现全原子蛋白质设计的生成式突破
人工智能·深度学习·学习·机器学习·ai·cpu·gpu
ASKED_20198 小时前
End-To-End之于推荐: Meta GRs & HSTU 生成式推荐革命之作
人工智能
liulanba8 小时前
AI Agent技术完整指南 第一部分:基础理论
数据库·人工智能·oracle
自动化代码美学8 小时前
【AI白皮书】AI应用运行时
人工智能
小CC吃豆子8 小时前
openGauss :核心定位 + 核心优势 + 适用场景
人工智能
一瞬祈望8 小时前
⭐ 深度学习入门体系(第 7 篇): 什么是损失函数?
人工智能·深度学习·cnn·损失函数