李宏毅2022机器学习/深度学习 个人笔记(2)

本系列用于推导、记录该系列视频中本人不熟悉、或认为有价值的知识点

本篇记录第一讲(选修):神奇宝贝分类(续) 讲解如何用高斯概率分布假设来推导类似于逻辑斯蒂分布的表达式

如图,boundary变为直线,结果也有上升

我们不一定采用高斯几率模型,也开始采用其他模型,这不是死板的。举例:

假设它们之间独立,则协方差矩阵为对角矩阵,使用了Naive Bayes Classifier。

接下来,我们令z为图中所示,可推出该概率为sigmoid函数:

接下来,算一下z到底是什么

继续推导:

继续推导:

可以发现,最终所求量为sigmoid(wx+b)的形式,且wx+b的形式正好说明了边界为直线

相关推荐
齐尹秦4 分钟前
HTML5 Web Workers 学习笔记
笔记·学习
不要影响我叠Q2 小时前
《Fundamentals of Electromigration-Aware IntegratedCircuit Design》笔记
笔记
蒹葭苍苍8732 小时前
LoRA、QLoRA微调与Lama Factory
人工智能·笔记
蹦蹦跳跳真可爱5892 小时前
Python----机器学习(基于PyTorch的线性回归)
人工智能·pytorch·python·机器学习·线性回归
Json_2 小时前
Vue 构造器 Vue.extend
前端·vue.js·深度学习
Json_2 小时前
Vue 实例方法
前端·vue.js·深度学习
mosquito_lover12 小时前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
船长@Quant2 小时前
PyTorch量化进阶教程:第二章 Transformer 理论详解
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lib
吴梓穆2 小时前
UE5学习笔记 FPS游戏制作33 换子弹 动画事件
笔记·学习·ue4
2401_884810742 小时前
Spring-MVC笔记上(上)
笔记·spring·mvc