【Hadoop】- MapReduce概述[5]

目录

前言

[一、分布式计算框架 - MapReduce](#一、分布式计算框架 - MapReduce)

二、MapReduce执行原理


前言

MapReduce是一种分布式计算框架,由Google开发。它的设计目标是将大规模数据集的处理和生成任务分布到一个由廉价计算机组成的集群中。

在MapReduce模型中,输入数据被分割成若干小块,并在集群中的多个节点上并行处理。每个节点执行"map"函数,将输入数据转换为一组键值对。这些键值对将进行洗牌和排序,并将生成的中间数据发送到"reduce"函数。

"reduce"函数将中间数据进行处理,将其合并为最终结果或输出。它根据所需的计算或分析对数据进行聚合和分析。

MapReduce提供了容错机制,系统可以通过将工作负载重新分配到其他节点来自动处理单个节点的失败。它还提供了可扩展性,可以通过添加更多的节点来处理更大的数据集或增加的处理需求。

MapReduce广泛用于大数据处理应用,例如分布式网络索引、日志分析和数据挖掘。它对其他数据处理系统的发展产生了影响,如Apache Hadoop。

一、分布式计算框架 - MapReduce

MapReduce是"分散"->"汇总"模式的分布式计算框架,可供开发人员开发相关程序进行分布式数据计算。MapRduce提供了2个编程接口:

  • Map
  • Reduce

其中

  • Map功能接口提供了"分散"的功能,有服务器分布式对数据进行处理
  • Reduce功能接口提供了"汇总"的功能,将分布式的处理结果汇总统计

用户如需使用MapReduce框架完成自定义需求的程序开发,只需要使用Java、Python等编程语言,实现Map Reduce功能接口即可。

二、MapReduce执行原理

现在,我们借助一个案例,简单分析MapReduce是如何完成分布式计算的。

假设有如下文件,内部记录了许多的单词。并且已经开发好了一个MapReduce程序,功能是统计每个单词出现的次数。

假设有4台服务器用以执行MapReduce任务,可以3台服务器执行Map,1台服务器执行Reduce

总结

1、什么是MapReduce

  • MapReduce是Hadoop中的分布式计算组件
  • MapReduce可以以分散->汇总模式执行分布式计算任务

2、MapReduce的主要编程接口

  • map接口,主要提供"分散"功能,有服务器分布式处理数据
  • reduce接口,主要提供"汇总"功能,进行数据汇总统计得到结果
  • MapReduce可供Java、Python等语言开发计算程序
相关推荐
wudl556619 分钟前
Flink Keyed State 详解之二
大数据·flink
IT学长编程30 分钟前
计算机毕业设计 基于Python的热门游戏推荐系统的设计与实现 Django 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·python·django·毕业设计·课程设计·毕业论文
Ashlee_code1 小时前
什么是TRS收益互换与场外个股期权:从金融逻辑到系统开发实践
大数据·人工智能·python·金融·系统架构·清算·柜台
人大博士的交易之路2 小时前
龙虎榜——20251031
大数据·数学建模·数据分析·缠论·缠中说禅·龙虎榜·道琼斯结构
科海思 132-6O59 69252 小时前
矿泉水除溴化物的解决方案
大数据·运维
深鱼~2 小时前
从本地存储到全球访问:1Panel的家庭服务器革命
大数据·运维·服务器
档案宝档案管理5 小时前
打破数据孤岛:制造行业档案管理方案如何实现数据互通与协同?
大数据·档案·档案管理
鹧鸪云光伏与储能软件开发5 小时前
光伏开发小程序:快速获客,成交项目更迅速
大数据·微信小程序·小程序·光伏
淞宇智能科技6 小时前
固态电池五大核心设备全解析
大数据·人工智能·自动化
武子康6 小时前
大数据-141 ClickHouse 副本实战 | ReplicatedMergeTree + ZooKeeper 从 0–1:创建、选举、日志复制、排障
大数据·后端·nosql