【目标检测】Focal Loss

Focal Loss用来解决正负样本不平衡问题,并提升训练过程对困难样本的关注。

在一阶段目标检测算法中,以YOLO v3为例,计算置信度损失(图中第3、4项)时有目标的点少,无目标的点多,两者可能相差百倍千倍甚至更多,这就导致无目标的置信度损失会以压倒性的数量优势在数值上淹没有目标的置信度损失。

首先,我们回顾一下第三、四项里 [ ⋅ ] [\cdot] [⋅]所对应的BCELoss,其公式如下:

其中, p ∈ [ 0 , 1 ] p\in[0,1] p∈[0,1]是经sigmoid输出的预测概率, y ∈ { 0 , 1 } y\in\{0,1\} y∈{0,1}是真实标签。简单起见,我们使用 p t p_t pt简化上述损失, p t p_t pt公式如下:

于是,我们得到

在此基础上,Focal Loss引入 α t \alpha_t αt来加权BCELoss以解决正负样本不平衡的问题,公式如下:

其中, α t \alpha_t αt定义如下:

其中, α ∈ [ 0 , 1 ] \alpha\in[0,1] α∈[0,1]是自行设定的权重参数。直观来说,当正样本较少时,我们可以设定一个较大的 α \alpha α,例如 0.9 0.9 0.9,这样正样本的损失相比负样本的损失就会更大从而解决正负样本失衡的问题。

⚠️ 事实上,Focal Loss原文中的最佳 α \alpha α是 0.25 0.25 0.25,这说明原文并不是用它来处理正负样本失衡的,更像是一个超参数。

进一步地,Focal Loss还能使得模型在训练过程中更加关注困难样本 。对于正样本来说,我们希望预测概率 p → 1 p\rightarrow 1 p→1,那么 p p p越小说明该样本预测起来就越困难,反之就越简单。对于负样本, p p p越小说明该样本预测起来就越简单,反之就越困难。直观上,我们只需努力矫正困难样本,毕竟简单样本已经预测的不错了,于是Focal Loss引入 ( 1 − p t ) γ (1-p_t)^{\gamma} (1−pt)γ来加权BCELoss以实习对困难样本的关注,公式如下:

其中, γ ≥ 0 \gamma\geq0 γ≥0,从下表可以看出, ( 1 − p t ) γ (1-p_t)^{\gamma} (1−pt)γ使简单样本的损失大大降低,从而使困难样本与简单样本的损失比增大,以使训练过程更加关注困难样本。

y y y γ \gamma γ p p p p t p_t pt C E ( p , y ) CE(p,y) CE(p,y) ( 1 − p t ) γ (1-p_t)^{\gamma} (1−pt)γ F L ( p t ) FL(p_t) FL(pt)
1 2 0.9 0.9 0.11 0.01 0.0011
1 2 0.1 0.1 2.30 0.81 1.863
0 2 0.2 0.8 0.22 0.04 0.0088
0 2 0.8 0.2 1.61 0.64 1.0304

综合 α t \alpha_t αt和 ( 1 − p t ) γ (1-p_t)^{\gamma} (1−pt)γ即为完整的Focal Loss,公式如下:

写成 p p p和 α \alpha α的形式就是:
F L ( p ) = { − α ( 1 − p ) γ log ⁡ ( p ) , i f y = 1 − ( 1 − α ) p γ log ⁡ ( 1 − p ) , o t h e r w i s e FL(p)=\begin{cases}-\alpha(1-p)^{\gamma}\log(p),&if~y=1\\-(1-\alpha)p^{\gamma}\log(1-p), &otherwise\end{cases} FL(p)={−α(1−p)γlog(p),−(1−α)pγlog(1−p),if y=1otherwise

致谢:

本博客仅做记录使用,无任何商业用途,参考内容如下:
3.1 YOLO系列理论合集(YOLOv1~v3)

相关推荐
wolfseek1 天前
opencv模版匹配
c++·人工智能·opencv·计算机视觉
犽戾武1 天前
1. 简单回顾Numpy神经网络
人工智能·神经网络·numpy
Lab4AI大模型实验室1 天前
【每日Arxiv热文】还在为视频编辑发愁?港科大&蚂蚁集团提出Ditto框架刷新SOTA!
人工智能·计算机视觉·视频编辑·ai agent·智能体学习
阿里云大数据AI技术1 天前
云栖实录 | 实时计算 Flink 全新升级 - 全栈流处理平台助力实时智能
大数据·人工智能
新加坡内哥谈技术1 天前
谷歌Quantum Echoes算法:迈向量子计算现实应用的重要一步
人工智能
Godspeed Zhao1 天前
自动驾驶中的传感器技术70——Navigation(7)
人工智能·机器学习·自动驾驶
这儿有一堆花1 天前
AI 翻译入门指南:机器如何理解语言
人工智能·web
明月照山海-1 天前
机器学习周报十九
人工智能·机器学习
王哈哈^_^1 天前
PyTorch vs TensorFlow:从入门到落地的全方位对比
人工智能·pytorch·python·深度学习·计算机视觉·tensorflow·1024程序员节
链上日记1 天前
POPAI全球启动仪式成功举办|AI×Web3全球算力革命启航
人工智能