【目标检测】Focal Loss

Focal Loss用来解决正负样本不平衡问题,并提升训练过程对困难样本的关注。

在一阶段目标检测算法中,以YOLO v3为例,计算置信度损失(图中第3、4项)时有目标的点少,无目标的点多,两者可能相差百倍千倍甚至更多,这就导致无目标的置信度损失会以压倒性的数量优势在数值上淹没有目标的置信度损失。

首先,我们回顾一下第三、四项里 [ ⋅ ] [\cdot] [⋅]所对应的BCELoss,其公式如下:

其中, p ∈ [ 0 , 1 ] p\in[0,1] p∈[0,1]是经sigmoid输出的预测概率, y ∈ { 0 , 1 } y\in\{0,1\} y∈{0,1}是真实标签。简单起见,我们使用 p t p_t pt简化上述损失, p t p_t pt公式如下:

于是,我们得到

在此基础上,Focal Loss引入 α t \alpha_t αt来加权BCELoss以解决正负样本不平衡的问题,公式如下:

其中, α t \alpha_t αt定义如下:

其中, α ∈ [ 0 , 1 ] \alpha\in[0,1] α∈[0,1]是自行设定的权重参数。直观来说,当正样本较少时,我们可以设定一个较大的 α \alpha α,例如 0.9 0.9 0.9,这样正样本的损失相比负样本的损失就会更大从而解决正负样本失衡的问题。

⚠️ 事实上,Focal Loss原文中的最佳 α \alpha α是 0.25 0.25 0.25,这说明原文并不是用它来处理正负样本失衡的,更像是一个超参数。

进一步地,Focal Loss还能使得模型在训练过程中更加关注困难样本 。对于正样本来说,我们希望预测概率 p → 1 p\rightarrow 1 p→1,那么 p p p越小说明该样本预测起来就越困难,反之就越简单。对于负样本, p p p越小说明该样本预测起来就越简单,反之就越困难。直观上,我们只需努力矫正困难样本,毕竟简单样本已经预测的不错了,于是Focal Loss引入 ( 1 − p t ) γ (1-p_t)^{\gamma} (1−pt)γ来加权BCELoss以实习对困难样本的关注,公式如下:

其中, γ ≥ 0 \gamma\geq0 γ≥0,从下表可以看出, ( 1 − p t ) γ (1-p_t)^{\gamma} (1−pt)γ使简单样本的损失大大降低,从而使困难样本与简单样本的损失比增大,以使训练过程更加关注困难样本。

y y y γ \gamma γ p p p p t p_t pt C E ( p , y ) CE(p,y) CE(p,y) ( 1 − p t ) γ (1-p_t)^{\gamma} (1−pt)γ F L ( p t ) FL(p_t) FL(pt)
1 2 0.9 0.9 0.11 0.01 0.0011
1 2 0.1 0.1 2.30 0.81 1.863
0 2 0.2 0.8 0.22 0.04 0.0088
0 2 0.8 0.2 1.61 0.64 1.0304

综合 α t \alpha_t αt和 ( 1 − p t ) γ (1-p_t)^{\gamma} (1−pt)γ即为完整的Focal Loss,公式如下:

写成 p p p和 α \alpha α的形式就是:
F L ( p ) = { − α ( 1 − p ) γ log ⁡ ( p ) , i f y = 1 − ( 1 − α ) p γ log ⁡ ( 1 − p ) , o t h e r w i s e FL(p)=\begin{cases}-\alpha(1-p)^{\gamma}\log(p),&if~y=1\\-(1-\alpha)p^{\gamma}\log(1-p), &otherwise\end{cases} FL(p)={−α(1−p)γlog(p),−(1−α)pγlog(1−p),if y=1otherwise

致谢:

本博客仅做记录使用,无任何商业用途,参考内容如下:
3.1 YOLO系列理论合集(YOLOv1~v3)

相关推荐
weixin_4224564419 分钟前
第N7周:调用Gensim库训练Word2Vec模型
人工智能·机器学习·word2vec
HuggingFace3 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
企企通采购云平台4 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍4 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_5 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
巴伦是只猫5 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明5 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法
lishaoan776 小时前
使用tensorflow的线性回归的例子(十二)
人工智能·tensorflow·线性回归·戴明回归
Danceful_YJ6 小时前
4.权重衰减(weight decay)
python·深度学习·机器学习
二DUAN帝6 小时前
UE实现路径回放、自动驾驶功能简记
人工智能·websocket·机器学习·ue5·自动驾驶·ue4·cesiumforue