TensorFlow文件读取 --TFRecords文件

TFRecords文件

是一种二进制文件,能够很好的利用内存,更方便复制和移动,并且不需要单独的标签文件

使用步骤

1)获取数据

2)将数据填入到Example协议内存块(protocol buffer)

3)将协议内存块序列化为字符串,并且通过 tf.python_io.TFRecordWriter写入到TFRecords文件

文件格式 *.tfrecords

Example结构

●tf. train. Example协议内存块(protocol buffer)(协议内存块包含了字段 Features )

●Features包含了一个Feature 字段

●Feature 中包含要写入的数据、并指明数据类型。

这是一个样本的结构,批数据需要循环存入这样的结构

  • tf.train.Example(features=None)

写入tfrecords文件

features: tf.train.Features类型的特征实例

return: example格式协议块

  • tf.train.Features(feature=None)

构建每个样本的信息键值对

feature: 字典数据,key为要保存的名字

value为tf.train.Feature实例

return: Features类型

  • tf.train.Feature(options)

options: 例如

bytes_ litftrain. BytesList(value=[Bytes])

int64. lststf.train. Int64List(value=[Value)

支持存入的类型如下

tf.train.Int64List(value=Malue])

tf.train.BytesList(value=[Bytes])

tf.train.FloatList(value=[value]

流程分析

1)构造存储实力 tf.python_io.TFRecordWriter(patch)

2)循环将数据填入到Example协议内存块(protocol buffer)

example解析

●tf.parse. single_ example(serialized, features=None, name=None)

解析一个单一的Example原型

serialized: 标量字符串Tensor, - 一个序列化的Example

features: dict字典数据,键为读取的名字,值为FixedLenFeature

return:一 个键值对组成的字典,键为读取的名字

●tf.FixedL enFeature(shape, dtype)

shape: 输入数据的形状,一般不指定,为空列表

dtype: 输入数据类型,与存储进文件的类型要一致

类型只能是float32, int64, string

案例:

写入:

读取:

流程:

1)构造文件名队列

2)读取和解码

读取

解析example

解码

3)构造批处理队列

相关推荐
最新快讯32 分钟前
科技快讯 | 阿里云百炼MCP服务上线;英伟达官宣:CUDA 工具链将全面原生支持 Python
人工智能
__Benco2 小时前
OpenHarmony子系统开发 - 热管理(一)
人工智能·harmonyos
知识中的海王2 小时前
js逆向入门图灵爬虫练习平台第六题
python
吴法刚3 小时前
14-Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析(二分类))
人工智能·深度学习·自然语言处理·分类·langchain·bert·langgraph
碳基学AI3 小时前
北京大学DeepSeek内部研讨系列:AI在新媒体运营中的应用与挑战|122页PPT下载方法
大数据·人工智能·python·算法·ai·新媒体运营·产品运营
forestsea3 小时前
Python进阶编程总结
开发语言·python·notepad++
是店小二呀3 小时前
Llama 4革命性发布与绿色AI前沿研究
人工智能·llama
2301_799755343 小时前
文件内容课堂总结
人工智能
杰克逊的日记3 小时前
AI集群设计
人工智能·ai·gpu·ai集群·pytorach
袖清暮雨4 小时前
Python刷题笔记
笔记·python·算法