TensorFlow文件读取 --TFRecords文件

TFRecords文件

是一种二进制文件,能够很好的利用内存,更方便复制和移动,并且不需要单独的标签文件

使用步骤

1)获取数据

2)将数据填入到Example协议内存块(protocol buffer)

3)将协议内存块序列化为字符串,并且通过 tf.python_io.TFRecordWriter写入到TFRecords文件

文件格式 *.tfrecords

Example结构

●tf. train. Example协议内存块(protocol buffer)(协议内存块包含了字段 Features )

●Features包含了一个Feature 字段

●Feature 中包含要写入的数据、并指明数据类型。

这是一个样本的结构,批数据需要循环存入这样的结构

  • tf.train.Example(features=None)

写入tfrecords文件

features: tf.train.Features类型的特征实例

return: example格式协议块

  • tf.train.Features(feature=None)

构建每个样本的信息键值对

feature: 字典数据,key为要保存的名字

value为tf.train.Feature实例

return: Features类型

  • tf.train.Feature(options)

options: 例如

bytes_ litftrain. BytesList(value=[Bytes])

int64. lststf.train. Int64List(value=[Value)

支持存入的类型如下

tf.train.Int64List(value=Malue])

tf.train.BytesList(value=[Bytes])

tf.train.FloatList(value=[value]

流程分析

1)构造存储实力 tf.python_io.TFRecordWriter(patch)

2)循环将数据填入到Example协议内存块(protocol buffer)

example解析

●tf.parse. single_ example(serialized, features=None, name=None)

解析一个单一的Example原型

serialized: 标量字符串Tensor, - 一个序列化的Example

features: dict字典数据,键为读取的名字,值为FixedLenFeature

return:一 个键值对组成的字典,键为读取的名字

●tf.FixedL enFeature(shape, dtype)

shape: 输入数据的形状,一般不指定,为空列表

dtype: 输入数据类型,与存储进文件的类型要一致

类型只能是float32, int64, string

案例:

写入:

读取:

流程:

1)构造文件名队列

2)读取和解码

读取

解析example

解码

3)构造批处理队列

相关推荐
凯禾瑞华养老实训室4 分钟前
人才教育导向下:老年生活照护实训室助力提升学生老年照护服务能力
人工智能
luckys.one6 分钟前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
湫兮之风1 小时前
Opencv: cv::LUT()深入解析图像块快速查表变换
人工智能·opencv·计算机视觉
大翻哥哥2 小时前
Python 2025:量化金融与智能交易的新纪元
开发语言·python·金融
Christo32 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
qq_508823402 小时前
金融量化指标--2Alpha 阿尔法
大数据·人工智能
黑金IT2 小时前
`.cursorrules` 与 `.cursorcontext`:Cursor AI 编程助手时代下的“双轨配置”指南
人工智能
zhousenshan3 小时前
Python爬虫常用框架
开发语言·爬虫·python
dlraba8023 小时前
基于 OpenCV 的信用卡数字识别:从原理到实现
人工智能·opencv·计算机视觉
IMER SIMPLE3 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习