TensorFlow文件读取 --TFRecords文件

TFRecords文件

是一种二进制文件,能够很好的利用内存,更方便复制和移动,并且不需要单独的标签文件

使用步骤

1)获取数据

2)将数据填入到Example协议内存块(protocol buffer)

3)将协议内存块序列化为字符串,并且通过 tf.python_io.TFRecordWriter写入到TFRecords文件

文件格式 *.tfrecords

Example结构

●tf. train. Example协议内存块(protocol buffer)(协议内存块包含了字段 Features )

●Features包含了一个Feature 字段

●Feature 中包含要写入的数据、并指明数据类型。

这是一个样本的结构,批数据需要循环存入这样的结构

  • tf.train.Example(features=None)

写入tfrecords文件

features: tf.train.Features类型的特征实例

return: example格式协议块

  • tf.train.Features(feature=None)

构建每个样本的信息键值对

feature: 字典数据,key为要保存的名字

value为tf.train.Feature实例

return: Features类型

  • tf.train.Feature(options)

options: 例如

bytes_ litftrain. BytesList(value=[Bytes])

int64. lststf.train. Int64List(value=[Value)

支持存入的类型如下

tf.train.Int64List(value=Malue])

tf.train.BytesList(value=[Bytes])

tf.train.FloatList(value=[value]

流程分析

1)构造存储实力 tf.python_io.TFRecordWriter(patch)

2)循环将数据填入到Example协议内存块(protocol buffer)

example解析

●tf.parse. single_ example(serialized, features=None, name=None)

解析一个单一的Example原型

serialized: 标量字符串Tensor, - 一个序列化的Example

features: dict字典数据,键为读取的名字,值为FixedLenFeature

return:一 个键值对组成的字典,键为读取的名字

●tf.FixedL enFeature(shape, dtype)

shape: 输入数据的形状,一般不指定,为空列表

dtype: 输入数据类型,与存储进文件的类型要一致

类型只能是float32, int64, string

案例:

写入:

读取:

流程:

1)构造文件名队列

2)读取和解码

读取

解析example

解码

3)构造批处理队列

相关推荐
hans汉斯6 分钟前
【人工智能与机器人研究】一种库坝系统水下成像探查有缆机器人系统设计模式
大数据·数据库·论文阅读·人工智能·设计模式·机器人·论文笔记
之歆13 分钟前
LangGraph构建多智能体
人工智能·python·llama
rhy2006052015 分钟前
SAM的低秩特性
人工智能·算法·机器学习·语言模型
闲人编程16 分钟前
告别Print: Python调试入门,用PDB高效找Bug
开发语言·python·bug·调试·pdb·断点设置
AI量化投资实验室20 分钟前
年化422%,回撤7%,夏普比5.4| Deap因子挖掘新增qlib因子库,附python代码
开发语言·python
站大爷IP20 分钟前
Python爬取微博热搜并实时发送到邮箱:零基础实现指南
python
SelectDB技术团队22 分钟前
岚图汽车 x Apache Doris : 海量车联网数据实时分析实践
数据仓库·人工智能·数据分析·汽车·apache
FIT2CLOUD飞致云43 分钟前
推出工具商店,工作流新增支持循环、意图识别、文生视频和图生视频节点,MaxKB v2.2.0版本发布
人工智能·开源·deepseek
胖墩会武术1 小时前
大模型效果优化方案(经验分享)
人工智能·经验分享·python·语言模型
双普拉斯1 小时前
Spring WebFlux调用生成式AI提供的stream流式接口,实现返回实时对话
java·vue.js·人工智能·后端·spring