TensorFlow文件读取 --TFRecords文件

TFRecords文件

是一种二进制文件,能够很好的利用内存,更方便复制和移动,并且不需要单独的标签文件

使用步骤

1)获取数据

2)将数据填入到Example协议内存块(protocol buffer)

3)将协议内存块序列化为字符串,并且通过 tf.python_io.TFRecordWriter写入到TFRecords文件

文件格式 *.tfrecords

Example结构

●tf. train. Example协议内存块(protocol buffer)(协议内存块包含了字段 Features )

●Features包含了一个Feature 字段

●Feature 中包含要写入的数据、并指明数据类型。

这是一个样本的结构,批数据需要循环存入这样的结构

  • tf.train.Example(features=None)

写入tfrecords文件

features: tf.train.Features类型的特征实例

return: example格式协议块

  • tf.train.Features(feature=None)

构建每个样本的信息键值对

feature: 字典数据,key为要保存的名字

value为tf.train.Feature实例

return: Features类型

  • tf.train.Feature(options)

options: 例如

bytes_ litftrain. BytesList(value=[Bytes])

int64. lststf.train. Int64List(value=[Value)

支持存入的类型如下

tf.train.Int64List(value=Malue])

tf.train.BytesList(value=[Bytes])

tf.train.FloatList(value=[value]

流程分析

1)构造存储实力 tf.python_io.TFRecordWriter(patch)

2)循环将数据填入到Example协议内存块(protocol buffer)

example解析

●tf.parse. single_ example(serialized, features=None, name=None)

解析一个单一的Example原型

serialized: 标量字符串Tensor, - 一个序列化的Example

features: dict字典数据,键为读取的名字,值为FixedLenFeature

return:一 个键值对组成的字典,键为读取的名字

●tf.FixedL enFeature(shape, dtype)

shape: 输入数据的形状,一般不指定,为空列表

dtype: 输入数据类型,与存储进文件的类型要一致

类型只能是float32, int64, string

案例:

写入:

读取:

流程:

1)构造文件名队列

2)读取和解码

读取

解析example

解码

3)构造批处理队列

相关推荐
橡晟5 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子5 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
Leah01055 小时前
什么是神经网络,常用的神经网络,如何训练一个神经网络
人工智能·深度学习·神经网络·ai
倔强青铜35 小时前
苦练Python第18天:Python异常处理锦囊
开发语言·python
PyAIExplorer5 小时前
图像亮度调整的简单实现
人工智能·计算机视觉
企鹅与蟒蛇5 小时前
Ubuntu-25.04 Wayland桌面环境安装Anaconda3之后无法启动anaconda-navigator问题解决
linux·运维·python·ubuntu·anaconda
autobaba6 小时前
编写bat文件自动打开chrome浏览器,并通过selenium抓取浏览器操作chrome
chrome·python·selenium·rpa
Striker_Eureka6 小时前
DiffDet4SAR——首次将扩散模型用于SAR图像目标检测,来自2024 GRSL(ESI高被引1%论文)
人工智能·目标检测
Rvelamen7 小时前
LLM-SECURITY-PROMPTS大模型提示词攻击测评基准
人工智能·python·安全
【本人】7 小时前
Django基础(一)———创建与启动
后端·python·django