TensorFlow文件读取 --TFRecords文件

TFRecords文件

是一种二进制文件,能够很好的利用内存,更方便复制和移动,并且不需要单独的标签文件

使用步骤

1)获取数据

2)将数据填入到Example协议内存块(protocol buffer)

3)将协议内存块序列化为字符串,并且通过 tf.python_io.TFRecordWriter写入到TFRecords文件

文件格式 *.tfrecords

Example结构

●tf. train. Example协议内存块(protocol buffer)(协议内存块包含了字段 Features )

●Features包含了一个Feature 字段

●Feature 中包含要写入的数据、并指明数据类型。

这是一个样本的结构,批数据需要循环存入这样的结构

  • tf.train.Example(features=None)

写入tfrecords文件

features: tf.train.Features类型的特征实例

return: example格式协议块

  • tf.train.Features(feature=None)

构建每个样本的信息键值对

feature: 字典数据,key为要保存的名字

value为tf.train.Feature实例

return: Features类型

  • tf.train.Feature(options)

options: 例如

bytes_ litftrain. BytesList(value=[Bytes])

int64. lststf.train. Int64List(value=[Value)

支持存入的类型如下

tf.train.Int64List(value=Malue])

tf.train.BytesList(value=[Bytes])

tf.train.FloatList(value=[value]

流程分析

1)构造存储实力 tf.python_io.TFRecordWriter(patch)

2)循环将数据填入到Example协议内存块(protocol buffer)

example解析

●tf.parse. single_ example(serialized, features=None, name=None)

解析一个单一的Example原型

serialized: 标量字符串Tensor, - 一个序列化的Example

features: dict字典数据,键为读取的名字,值为FixedLenFeature

return:一 个键值对组成的字典,键为读取的名字

●tf.FixedL enFeature(shape, dtype)

shape: 输入数据的形状,一般不指定,为空列表

dtype: 输入数据类型,与存储进文件的类型要一致

类型只能是float32, int64, string

案例:

写入:

读取:

流程:

1)构造文件名队列

2)读取和解码

读取

解析example

解码

3)构造批处理队列

相关推荐
澪-sl3 分钟前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~19 分钟前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
摸爬滚打李上进36 分钟前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
HuashuiMu花水木38 分钟前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记
lishaoan7742 分钟前
使用tensorflow的线性回归的例子(四)
人工智能·tensorflow·线性回归
AI让世界更懂你1 小时前
【ACL系列论文写作指北15-如何进行reveiw】-公平、公正、公开
人工智能·自然语言处理
lishaoan771 小时前
使用tensorflow的线性回归的例子(九)
tensorflow·线性回归·neo4j
凛铄linshuo2 小时前
爬虫简单实操2——以贴吧为例爬取“某吧”前10页的网页代码
爬虫·python·学习
牛客企业服务2 小时前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘
胡斌附体2 小时前
linux测试端口是否可被外部访问
linux·运维·服务器·python·测试·端口测试·临时服务器