ElasticSearch查询时修改打分

原生的ES打分基于BM25算法,相比于TF-IDF已经有了较大的改进,但是在实际场景中往往最终的排序效果还是需要进行调整。由于直接修改索引的权重往往代价较大,比较经济的方式还是在查询时即时修改得分以实现排序控制。

注:案例测试数据详见:ElasticSearch中使用bge-large-zh-v1.5进行向量检索(一)-CSDN博客 中的第三部分。

场景一:negative_boost

适用场景:想降低某些关键词的检索权重,但这些文档往往又包含我们想命中的关键词,直接去掉也不合适,只能把排名降低。

例如,针对以下case,我们想搜包含"新疆"的文档:

bash 复制代码
GET article/_search
{
  "query": {
    "match": {
      "title": "新疆"
    }
  }
}

直出的结果为:

编号002的在003前面。

假设我们的需求是想让出现"中欧"关键词的文档相关度降低,则可以使用negative_boost:

bash 复制代码
GET article/_search
{
  "query": {
    "boosting": {
      "positive": {
        "match": {
          "title": "新疆"
        }
      },
      "negative": {
        "match": {
          "title": "中欧"
        }
      },
      "negative_boost": 0.5
    }
  }
}

效果:

调整后编号003的在002的前面,因为标题包含"中欧"的文档的分值乘以了negative_boost(0.5)后被降低了。

场景二:script_score

适用场景:利用索引数据中既有的一些数值字段细粒度控制打分函数。有些索引中本来就有可以用来排名的字段(比如点赞数,阅读数,评论数等等)。

还是上文的案例,默认情况下搜"新疆",文档002在003之前,但很明显,文档003的阅读量(readNumber)更高,我们想让其排在前面。可以使用如下的查询:

bash 复制代码
GET article/_search
{
  "query": {
    "function_score": {
      "query": {
        "match": {
          "title": "新疆"
        }
      },
      "script_score": {
        "script": {
          "source": "_score * (doc['readNumber'].value)"
        }
      }
    }
  }
}

注意script_score要写在function_score里,其中_score * (doc['readNumber'].value)的意思是:将原始的打分乘以readNumber(阅读量)字段的值作为最终的打分。

最终效果如下:

场景三:field_value_factor

适用场景:和script_score类似,更注重打分平滑性。

还是上文的案例,默认情况下搜"新疆",文档002在003之前,但很明显,文档003的阅读量(readNumber)更高,我们想让其排在前面。可以使用如下的查询:

bash 复制代码
GET article/_search
{
  "query": {
    "function_score": {
      "query": {
        "match": {
          "title": "新疆"
        }
      },
      "field_value_factor": {
        "field": "readNumber",
        "modifier": "log1p",
        "factor": 2,
        "missing": 1
      },
      "boost_mode": "multiply"
    }
  }
}

field_value_factor的含义:

field:待计算的字段

modifier:打分函数

factor:field计算时乘以的因子

missing:缺失值

boost_mode:和原始打分_score的结合方式。分 sum / avg / multiply / max / min / replace

上述语句的含义等于:

新分数=原分数 * log(1 + 2 * readNumber)

效果如下:

优势是得分相对比较光滑,比较接近。

相关推荐
飞火流星020273 小时前
ElasticSearch公共方法封装
elasticsearch·搜索引擎·es鉴权·es代理访问·es公共方法封装·es集群访问·判断es索引是否存在
vvvae12344 小时前
Elasticsearch实战应用:从“搜索小白”到“数据侦探”的进阶之路
elasticsearch
yinbp4 小时前
bboss v7.3.5来袭!新增异地灾备机制和Kerberos认证机制,助力企业数据安全
大数据·elasticsearch·微服务·etl·restclient·bboss
m0_748255024 小时前
Springboot中使用Elasticsearch(部署+使用+讲解 最完整)
spring boot·elasticsearch·jenkins
Elastic 中国社区官方博客4 小时前
Elasticsearch 自动补全搜索 - autocomplete
大数据·数据库·elasticsearch·搜索引擎·全文检索
Elastic 中国社区官方博客10 小时前
Elasticsearch 混合搜索 - Hybrid Search
大数据·人工智能·elasticsearch·搜索引擎·ai·语言模型·全文检索
KimiKudo10 小时前
记录一个ES分词器不生效的解决过程
elasticsearch
{⌐■_■}10 小时前
【git】工作场景下的 工作区 <-> 暂存区<-> 本地仓库 命令实战 具体案例
大数据·git·elasticsearch·golang·iphone·ip·etcd
risc12345610 小时前
【Elasticsearch】为一个字段配置多个分析器
elasticsearch
risc12345610 小时前
【Elasticsearch】如何获取一致的评分
elasticsearch