故障诊断 | 基于迁移学习和SqueezeNet 的滚动轴承故障诊断(Matlab)

目录

效果一览




基本介绍

将一维轴承振动信号转换为二维尺度图(时频谱图),并使用预训练网络应用迁移学习对轴承故障进行分类。 迁移学习显著减少了传统轴承诊断方法特征提取和特征选择所花费的时间,并在小型数据集中获得了良好的准确性。

滚动轴承故障诊断是机械设备维护中的一个重要任务,而基于迁移学习和SqueezeNet的方法可以帮助改善滚动轴承故障诊断的准确性。下面是一个基于这两种技术的滚动轴承故障诊断的简要流程:

数据收集和准备:收集包括正常运行和故障状态下的滚动轴承振动信号数据。确保数据集包含不同类型的故障和正常运行的样本,并进行必要的预处理,例如去噪、滤波、降采样等。

迁移学习模型选择:选择一个在大规模图像数据集上预先训练过的深度学习模型作为基础模型。可以选择SqueezeNet这样的轻量级模型,以便在嵌入式设备上进行实时诊断。

模型微调:使用收集的滚动轴承振动信号数据集对基础模型进行微调。在微调过程中,可以选择冻结前面几层的权重,只更新后面几层的权重,以便更好地适应轴承振动信号的特征。

模型训练和验证:使用微调后的模型对训练集进行训练,并使用验证集进行验证和调优。可以使用常见的训练技巧,如批量归一化、学习率调度等,以提高模型性能。

模型评估:使用测试集评估模型的性能。可以计算准确率、召回率、F1分数等指标来评估滚动轴承故障诊断的准确性和可靠性。

程序设计

  • 完整源码和数据私信博主回复基于迁移学习和SqueezeNet 的滚动轴承故障诊断(Matlab)
matlab 复制代码
path = fullfile('.', folderName);
imds = imageDatastore(path, ...
  'IncludeSubfolders',true,'LabelSource','foldernames');
% 使用 20% 的训练数据作为验证集
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.8,'randomize');
options = trainingOptions('sgdm', ...
  'InitialLearnRate',0.0001, ...
  'MaxEpochs',4, ...
  'Shuffle','every-epoch', ...
  'ValidationData',imdsValidation, ...
  'ValidationFrequency',30, ...
  'Verbose',false, ...
  'MiniBatchSize',20, ...
  'Plots','training-progress');

参考文献

相关推荐
ReinaXue2 天前
大模型【进阶】(四)QWen模型架构的解读
人工智能·神经网络·语言模型·transformer·语音识别·迁移学习·audiolm
Blossom.1184 天前
基于深度学习的医学图像分析:使用YOLOv5实现细胞检测
人工智能·python·深度学习·yolo·机器学习·分类·迁移学习
Blossom.1187 天前
基于深度学习的图像分类:使用DenseNet实现高效分类
人工智能·深度学习·目标检测·机器学习·分类·数据挖掘·迁移学习
Blossom.1188 天前
基于深度学习的图像分类:使用预训练模型进行迁移学习
人工智能·深度学习·目标检测·分类·音视频·语音识别·迁移学习
石迹耿千秋15 天前
迁移学习--基于torchvision中VGG16模型的实战
人工智能·pytorch·机器学习·迁移学习
Xyz_Overlord15 天前
NLP——迁移学习
人工智能·自然语言处理·迁移学习
IT猿手23 天前
2025最新智能优化算法:沙狐优化(Rüppell‘s Fox Optimizer,RFO)算法求解23个经典函数测试集,完整MATLAB代码
android·算法·matlab·迁移学习·优化算法·动态多目标优化·动态多目标进化算法
weixin_307779131 个月前
Hive集群之间迁移的Linux Shell脚本
大数据·linux·hive·bash·迁移学习
知舟不叙1 个月前
深度学习——迁移学习(Transfer Learning)
人工智能·深度学习·迁移学习
IT猿手2 个月前
动态多目标进化算法:基于迁移学习的动态多目标粒子群优化算法(TrMOPSO)求解IEEE CEC 2015,提供完整MATLAB代码
算法·matlab·迁移学习·动态多目标进化优化·动态多目标算法