多项式和Bezier曲线拟合


目录

  • [1. 多项式拟合](#1. 多项式拟合)
  • [2. Bezier曲线拟合](#2. Bezier曲线拟合)
  • [3. 源码地址](#3. 源码地址)

1. 多项式拟合

在曲线拟合中,多项式拟合方法的性能受到三个主要因素的影响:采样点个数、多项式阶数和正则项。

  • 采样点个数 N N N:从Figure 1中可以看出较少的采样点个数可能导致过拟合(overfitting)问题,即拟合曲线过于贴合训练数据,但在新数据上的泛化能力较差。而较多的采样点个数可以提供更多的信息,有助于拟合更精确的曲线,但也会增加计算的复杂性,所以当采样点增加到100时所有方法的拟合效果都很好。
  • 多项式阶数 M M M:随着多项式的阶数增加,模型的复杂度也随之增加。高阶多项式可以更好地拟合复杂的曲线,但也容易发生过拟合,比如9阶比3阶在采样点较少时表现非常差。如果选择了过低的多项式阶数,模型可能无法捕捉到数据中的复杂模式,但由于该曲线比较简单,所以在图中无法体现这一点。
  • 正则项 λ \lambda λ :正则项用于控制模型的复杂度,避免过拟合。它通过在损失函数中引入一个惩罚项,限制模型参数的大小。更大的正则化参数(如L1或L2正则化中的λ值)会使得模型更加趋向于简单的拟合曲线。如果正则化参数过大,可能导致欠拟合(underfitting)问题,模型无法很好地拟合数据。我们这里选择 l n λ = − 3 ln\lambda=-3 lnλ=−3在9阶多项式拟合中表现比较合适,采样点较少时大大降低模型复杂度,拟合结果更贴合真实曲线。
python 复制代码
# 使用多项式拟合
def polynomial_fit(x, y, degree, alpha=None):
    coeffs = np.polyfit(x, y, degree, rcond=alpha)
    return coeffs

# 返回拟合曲线的计算结果
def polynomial_curve(x, coeffs):
    return np.polyval(coeffs, x)


Fig. 1. 曲线拟合结果. a, 3阶多项式分别在10,15,100个采样点上的拟合结果. b, 9阶多项式分别在10,15,100个采样点上的拟合结果. c, 9阶多项式(添加正则项, ln λ=-3)分别在10,15,100个采样点上的拟合结果. d, Bezier曲线分别在10,20,100个采样点上的拟合结果.

2. Bezier曲线拟合

Bezier曲线是计算机图形学中广泛使用的一种参数曲线,它由一组控制点定义,并可以创建平滑的曲线路径。这种曲线在图形设计、动画和其他领域有着广泛的应用。在数据分析和信号处理领域,Bezier曲线也可以用来对散点数据进行平滑拟合。

我们这里将采样点作为Bezier曲线的控制点进行拟合,采样点较少时不如3阶多项式,而采样点达到20个及以上时效果有了明显提升。

在实践中,确定合适的贝塞尔曲线控制点是一个迭代的过程,需要根据实际情况不断调整和改进。经验和直觉在初始阶段可能起到重要的作用,但通过实际观察和评估,结合优化算法和交叉验证,可以逐步优化控制点的位置,以获得更好的拟合效果和形状调整。

下面源码是简单的Bezier曲线拟合实现:

python 复制代码
# 使用贝塞尔(Bernstein basis)曲线进行拟合
class BezierCurve:
    def __init__(self, control_points, ):
        self.control_points = control_points
        self.n = len(control_points) - 1

    def bernstein_basis(self, i, n, t):
        """Calculate the i-th Bernstein basis polynomial of degree n at t."""
        return np.math.comb(n, i) * (t ** i) * ((1 - t) ** (n - i))

    def evaluate(self, t):
        """Evaluate the Bezier curve at the given parameter t."""
        point = np.zeros_like(self.control_points[0])
        for i in range(self.n + 1):
            point += self.control_points[i] * self.bernstein_basis(i, self.n, t)
        return point

    def fit(self, samples):
        """Fit the Bezier curve to the given samples using the least squares method."""
        t = np.linspace(0, 1, self.n + 1)
        A = np.zeros((len(samples), self.n + 1))
        for i, sample in enumerate(samples):
            for j in range(self.n + 1):
                A[i, j] = self.bernstein_basis(j, self.n, t[i])
        b = samples
        x, _, _, _ = np.linalg.lstsq(A, b, rcond=None)
        self.control_points = x

3. 源码地址

如果对您有用的话可以点点star哦~

https://github.com/Jurio0304/cs-math/blob/main/hw1_bezier_fitting.py


创作不易,麻烦点点赞和关注咯!

相关推荐
不会代码的小测试2 分钟前
UI自动化-POM封装
开发语言·python·selenium·自动化
2401_841495644 分钟前
【LeetCode刷题】二叉树的层序遍历
数据结构·python·算法·leetcode·二叉树··队列
ZH154558913114 分钟前
Flutter for OpenHarmony Python学习助手实战:GUI桌面应用开发的实现
python·学习·flutter
B站计算机毕业设计超人19 分钟前
计算机毕业设计Hadoop+Spark+Hive招聘推荐系统 招聘大数据分析 大数据毕业设计(源码+文档+PPT+ 讲解)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
B站计算机毕业设计超人20 分钟前
计算机毕业设计hadoop+spark+hive交通拥堵预测 交通流量预测 智慧城市交通大数据 交通客流量分析(源码+LW文档+PPT+讲解视频)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
CodeSheep程序羊25 分钟前
拼多多春节加班工资曝光,没几个敢给这个数的。
java·c语言·开发语言·c++·python·程序人生·职场和发展
独好紫罗兰25 分钟前
对python的再认识-基于数据结构进行-a002-列表-列表推导式
开发语言·数据结构·python
机器学习之心HML28 分钟前
多光伏电站功率预测新思路:当GCN遇见LSTM,解锁时空预测密码,python代码
人工智能·python·lstm
2401_8414956430 分钟前
【LeetCode刷题】二叉树的直径
数据结构·python·算法·leetcode·二叉树··递归
王大傻092833 分钟前
python 读取文件可以使用open函数的 r 模式
python