Meta Llama 3本地部署

感谢阅读

环境安装

项目文件

下载完后在根目录进入命令终端(windows下cmd、linux下终端、conda的话activate)

运行

python 复制代码
pip install -e .

不要控制台,因为还要下载模型。这里挂着是节省时间

模型申请链接

复制如图所示的链接

然后在刚才的控制台

python 复制代码
bash download.sh

在验证哪里直接输入刚才链接即可

如果报错没有wget,则点我下载wget

然后放到C:\Windows\System32 下

python 复制代码
torchrun --nproc_per_node 1 example_chat_completion.py \
    --ckpt_dir Meta-Llama-3-8B-Instruct/ \
    --tokenizer_path Meta-Llama-3-8B-Instruct/tokenizer.model \
    --max_seq_len 512 --max_batch_size 6

收尾

创建chat.py脚本

python 复制代码
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.

from typing import List, Optional

import fire

from llama import Dialog, Llama


def main(
    ckpt_dir: str,
    tokenizer_path: str,
    temperature: float = 0.6,
    top_p: float = 0.9,
    max_seq_len: int = 512,
    max_batch_size: int = 4,
    max_gen_len: Optional[int] = None,
):
    """
    Examples to run with the models finetuned for chat. Prompts correspond of chat
    turns between the user and assistant with the final one always being the user.

    An optional system prompt at the beginning to control how the model should respond
    is also supported.

    The context window of llama3 models is 8192 tokens, so `max_seq_len` needs to be <= 8192.

    `max_gen_len` is optional because finetuned models are able to stop generations naturally.
    """
    generator = Llama.build(
        ckpt_dir=ckpt_dir,
        tokenizer_path=tokenizer_path,
        max_seq_len=max_seq_len,
        max_batch_size=max_batch_size,
    )

    # Modify the dialogs list to only include user inputs
    dialogs: List[Dialog] = [
        [{"role": "user", "content": ""}],  # Initialize with an empty user input
    ]

    # Start the conversation loop
    while True:
        # Get user input
        user_input = input("You: ")
        
        # Exit loop if user inputs 'exit'
        if user_input.lower() == 'exit':
            break
        
        # Append user input to the dialogs list
        dialogs[0][0]["content"] = user_input

        # Use the generator to get model response
        result = generator.chat_completion(
            dialogs,
            max_gen_len=max_gen_len,
            temperature=temperature,
            top_p=top_p,
        )[0]

        # Print model response
        print(f"Model: {result['generation']['content']}")

if __name__ == "__main__":
    fire.Fire(main)

然后运行

python 复制代码
torchrun --nproc_per_node 1 chat.py     --ckpt_dir Meta-Llama-3-8B-Instruct/     --tokenizer_path Meta-Llama-3-8B-Instruct/tokenizer.model     --max_seq_len 512 --max_batch_size 6
相关推荐
木枷2 天前
多GPU和单GPU运行llama的时间差
人工智能·llama
赴前尘2 天前
docker 安装并使用 ollama
docker·llama
迈火3 天前
ComfyUI - ELLA:解锁ComfyUI图像生成新境界的神奇插件
人工智能·gpt·stable diffusion·aigc·音视频·midjourney·llama
Coder个人博客4 天前
Llama.cpp GGML 模块深度分析
人工智能·自动驾驶·llama
牛奶咖啡.8545 天前
基于Llama-Factory/Qwen2.5-1.5b自定义数据集LoRA微调实战【PPO/RLHF/训练/评估】
语言模型·llm·llama·rl·ppo
白云千载尽6 天前
LLaMA-Factory 入门(二): 深入技术解析
人工智能·llama
Coder个人博客6 天前
Llama.cpp 整体架构分析
人工智能·自动驾驶·llama
Coder个人博客6 天前
Llama.cpp Tools 实用工具深度分析
人工智能·自动驾驶·llama
Coder个人博客6 天前
Llama.cpp Examples 示例程序深度分析
人工智能·自动驾驶·llama
白云千载尽6 天前
LLaMA-Factory 入门(一):Ubuntu20 下大模型微调与部署
人工智能·算法·大模型·微调·llama