InternLM2-lesson3作业+笔记

茴香豆

https://www.bilibili.com/video/BV1QA4m1F7t4/?vd_source=902e3124d4683c41b103f1d1322401fa

一、笔记

RAG

RAG(Retrieval Augmented Generation)是一种结合了检索(Retrieval)和生成(Generation)的技术,旨在通过利用外部知识库来增强大预言模型的性能。它通过检索用户输入相关的信息片段,并结合这些信息来生成更准确、更丰富的回答。简而言之,RAG=搜索引擎+大模型

三种范式

Naive RAG→Advanced RAG→Modular RAG

优化方法
  • 嵌入优化
  • 索引优化
  • 查询优化
  • 上下文管理
  • 检索优化:迭代检索、递归检索、自适应检索
  • 大模型微调
RAG vs 微调
RAG 微调
简介 非参数记忆;能够处理知识密集型任务;可以生成多样化内容 参数记忆;微调需要大量标注数据;可能存在过拟合
适用场景 适合信息更新较快的任务 适合高度专业化的任务
优势 动态知识更新,能处理长尾知识 可以针对特定任务优化
局限 依赖外部知识库的质量和大模型的能力 需要大量标注数据,不能很好适应新任务
大模型优化方法比较
  • 微调(Fine-tuning)
  • RAG
  • 提示词工程(Prompt Engineering)
  • 微调+RAG+提示词工程

茴香豆

茴香豆是一个基于LLMs的领域知识助手,俗称豆哥。可以用作智能客服,或在即时通讯工具(IM),如微信群中高效解答问题

系统组成

知识库+前端+后端大模型+豆哥

  • 知识库:markdown、word、pdf、txt、ppt
  • 前端应用:微信、飞书等
  • 后端:本地大模型------书生浦语、通义千问;远程大模型api------chatgpt、chatglm等
  • 豆哥:豆哥负责整合、打通工作流,形成智能领域的知识问答助手
    豆哥的工作流程可以分为:预处理、拒答工作流和应答工作流

    拒答工作流可以对提问进行打分,打分高的问题可以进入应答流进行回答。

二、基础作业

在 InternLM Studio 上部署茴香豆技术助手

(1)环境准备

从官方环境复制运行 InternLM 的基础环境

(2)安装茴香豆

(3)搭建RAG助手

增加茴香豆相关的问题到接受问题示例中

创建向量数据库

运行RAG知识助手


除了一个问题以外,其余两个都没有回答!!!

单独提问也无法正常回答:

相关推荐
BoBoZz192 分钟前
Glyph2D 同一个图形根据点云的输入产生不同位置的输出
python·vtk·图形渲染·图形处理
一笑code4 分钟前
pycharm vs vscode安装python的插件
vscode·python·pycharm
liwulin050616 分钟前
【PYTHON-YOLOV8N】yoloface+pytorch+cnn进行面部表情识别
python·yolo·cnn
(●—●)橘子……32 分钟前
记力扣1471.数组中的k个最强值 练习理解
数据结构·python·学习·算法·leetcode
_OP_CHEN36 分钟前
用极狐 CodeRider-Kilo 开发俄罗斯方块:AI 辅助编程的沉浸式体验
人工智能·vscode·python·ai编程·ai编程插件·coderider-kilo
Wpa.wk38 分钟前
自动化测试 - 文件上传 和 弹窗处理
开发语言·javascript·自动化测试·经验分享·爬虫·python·selenium
_OP_CHEN39 分钟前
【Python基础】(二)从 0 到 1 入门 Python 语法基础:从表达式到运算符的全面指南
开发语言·python
我命由我123451 小时前
Python Flask 开发:在 Flask 中返回字符串时,浏览器将其作为 HTML 解析
服务器·开发语言·后端·python·flask·html·学习方法
拾忆,想起1 小时前
设计模式:软件开发的可复用武功秘籍
开发语言·python·算法·微服务·设计模式·性能优化·服务发现
沃斯堡&蓝鸟1 小时前
DAY28 元组和OS模块
python·元组与os模块