InternLM2-lesson3作业+笔记

茴香豆

https://www.bilibili.com/video/BV1QA4m1F7t4/?vd_source=902e3124d4683c41b103f1d1322401fa

一、笔记

RAG

RAG(Retrieval Augmented Generation)是一种结合了检索(Retrieval)和生成(Generation)的技术,旨在通过利用外部知识库来增强大预言模型的性能。它通过检索用户输入相关的信息片段,并结合这些信息来生成更准确、更丰富的回答。简而言之,RAG=搜索引擎+大模型

三种范式

Naive RAG→Advanced RAG→Modular RAG

优化方法
  • 嵌入优化
  • 索引优化
  • 查询优化
  • 上下文管理
  • 检索优化:迭代检索、递归检索、自适应检索
  • 大模型微调
RAG vs 微调
RAG 微调
简介 非参数记忆;能够处理知识密集型任务;可以生成多样化内容 参数记忆;微调需要大量标注数据;可能存在过拟合
适用场景 适合信息更新较快的任务 适合高度专业化的任务
优势 动态知识更新,能处理长尾知识 可以针对特定任务优化
局限 依赖外部知识库的质量和大模型的能力 需要大量标注数据,不能很好适应新任务
大模型优化方法比较
  • 微调(Fine-tuning)
  • RAG
  • 提示词工程(Prompt Engineering)
  • 微调+RAG+提示词工程

茴香豆

茴香豆是一个基于LLMs的领域知识助手,俗称豆哥。可以用作智能客服,或在即时通讯工具(IM),如微信群中高效解答问题

系统组成

知识库+前端+后端大模型+豆哥

  • 知识库:markdown、word、pdf、txt、ppt
  • 前端应用:微信、飞书等
  • 后端:本地大模型------书生浦语、通义千问;远程大模型api------chatgpt、chatglm等
  • 豆哥:豆哥负责整合、打通工作流,形成智能领域的知识问答助手
    豆哥的工作流程可以分为:预处理、拒答工作流和应答工作流

    拒答工作流可以对提问进行打分,打分高的问题可以进入应答流进行回答。

二、基础作业

在 InternLM Studio 上部署茴香豆技术助手

(1)环境准备

从官方环境复制运行 InternLM 的基础环境

(2)安装茴香豆

(3)搭建RAG助手

增加茴香豆相关的问题到接受问题示例中

创建向量数据库

运行RAG知识助手


除了一个问题以外,其余两个都没有回答!!!

单独提问也无法正常回答:

相关推荐
刘一说13 分钟前
Java中基于属性的访问控制(ABAC):实现动态、上下文感知的权限管理
java·网络·python
一晌小贪欢13 分钟前
Python 操作 Excel 高阶技巧:用 openpyxl 玩转循环与 Decimal 精度控制
开发语言·python·excel·openpyxl·python办公·python读取excel
铁蛋AI编程实战16 分钟前
Falcon-H1-Tiny 微型 LLM 部署指南:100M 参数也能做复杂推理,树莓派 / 手机都能跑
java·人工智能·python·智能手机
写代码的【黑咖啡】29 分钟前
Python 中的自然语言处理工具:spaCy
开发语言·python·自然语言处理
高洁0130 分钟前
多模态融合驱动下的具身学习机制研究
python·算法·机器学习·数据挖掘·知识图谱
狗都不学爬虫_33 分钟前
JS逆向 -最新版 盼之(decode__1174、ssxmod_itna、ssxmod_itna2)纯算
javascript·爬虫·python·网络爬虫·wasm
七夜zippoe1 小时前
Dask:超越内存限制的并行计算——从任务图到分布式调度的实战指南
python·集群·task·array·dataframe·dask
serve the people1 小时前
python环境搭建 (五) Dockerfile 和 docker-compose.yml 核心作用
java·python·docker
维构lbs智能定位1 小时前
工厂人员定位(一)融合定位技术如何重构安全生产与效率管理?(含系统架构、技术选型对比、实际应用)
python·物联网·智慧工厂·厂区人员定位系统·工厂人员定位·工厂定位系统
yufuu981 小时前
进阶技巧与底层原理
jvm·数据库·python