InternLM2-lesson3作业+笔记

茴香豆

https://www.bilibili.com/video/BV1QA4m1F7t4/?vd_source=902e3124d4683c41b103f1d1322401fa

一、笔记

RAG

RAG(Retrieval Augmented Generation)是一种结合了检索(Retrieval)和生成(Generation)的技术,旨在通过利用外部知识库来增强大预言模型的性能。它通过检索用户输入相关的信息片段,并结合这些信息来生成更准确、更丰富的回答。简而言之,RAG=搜索引擎+大模型

三种范式

Naive RAG→Advanced RAG→Modular RAG

优化方法
  • 嵌入优化
  • 索引优化
  • 查询优化
  • 上下文管理
  • 检索优化:迭代检索、递归检索、自适应检索
  • 大模型微调
RAG vs 微调
RAG 微调
简介 非参数记忆;能够处理知识密集型任务;可以生成多样化内容 参数记忆;微调需要大量标注数据;可能存在过拟合
适用场景 适合信息更新较快的任务 适合高度专业化的任务
优势 动态知识更新,能处理长尾知识 可以针对特定任务优化
局限 依赖外部知识库的质量和大模型的能力 需要大量标注数据,不能很好适应新任务
大模型优化方法比较
  • 微调(Fine-tuning)
  • RAG
  • 提示词工程(Prompt Engineering)
  • 微调+RAG+提示词工程

茴香豆

茴香豆是一个基于LLMs的领域知识助手,俗称豆哥。可以用作智能客服,或在即时通讯工具(IM),如微信群中高效解答问题

系统组成

知识库+前端+后端大模型+豆哥

  • 知识库:markdown、word、pdf、txt、ppt
  • 前端应用:微信、飞书等
  • 后端:本地大模型------书生浦语、通义千问;远程大模型api------chatgpt、chatglm等
  • 豆哥:豆哥负责整合、打通工作流,形成智能领域的知识问答助手
    豆哥的工作流程可以分为:预处理、拒答工作流和应答工作流

    拒答工作流可以对提问进行打分,打分高的问题可以进入应答流进行回答。

二、基础作业

在 InternLM Studio 上部署茴香豆技术助手

(1)环境准备

从官方环境复制运行 InternLM 的基础环境

(2)安装茴香豆

(3)搭建RAG助手

增加茴香豆相关的问题到接受问题示例中

创建向量数据库

运行RAG知识助手


除了一个问题以外,其余两个都没有回答!!!

单独提问也无法正常回答:

相关推荐
海天一色y1 小时前
Pycharm(十六)面向对象进阶
ide·python·pycharm
??? Meggie1 小时前
【Python】保持Selenium稳定爬取的方法(防检测策略)
开发语言·python·selenium
XIE3922 小时前
Browser-use使用教程
python
酷爱码3 小时前
如何通过python连接hive,并对里面的表进行增删改查操作
开发语言·hive·python
蹦蹦跳跳真可爱5893 小时前
Python----深度学习(基于深度学习Pytroch簇分类,圆环分类,月牙分类)
人工智能·pytorch·python·深度学习·分类
MinggeQingchun6 小时前
Python - 爬虫-网页解析数据-库lxml(支持XPath)
爬虫·python·xpath·lxml
Python自动化办公社区7 小时前
Python 3.14:探索新版本的魅力与革新
开发语言·python
weixin_贾8 小时前
最新AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
python·机器学习·植被参数·遥感反演
张槊哲8 小时前
函数的定义与使用(python)
开发语言·python
船长@Quant8 小时前
文档构建:Sphinx全面使用指南 — 实战篇
python·markdown·sphinx·文档构建