Day43:LeedCode 1049. 最后一块石头的重量 II 494. 目标和 474.一和零

1049. 最后一块石头的重量 II

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头 ,然后将它们一起粉碎。假设石头的重量分别为 xy,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

示例 1:

复制代码
输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

思路:本题和Day42:动态规划 LeedCode 01背包 416. 分割等和子集-CSDN博客

中的分割等和子集类似,其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了

动态规划:

1.确定dp数组以及下标的含义

dp[i]:容量为i的背包,能背的最大重量

相对于 01背包,本题中,石头的重量是 stones[i],石头的价值也是 stones[i]

2.确定递推公式

dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

3.dp数组如何初始化

dp[j]都初始化为0

4.确定遍历顺序

如果使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历

最后dp[target]里是容量为target的背包所能背的最大重量。

5.举例推导

代码参考:

java 复制代码
class Solution {
    public int lastStoneWeightII(int[] stones) {
      int sum=0;
      for(int i=0;i<stones.length;i++){
        sum+=stones[i];
      }
      int target=sum/2;
      int[]dp=new int[target+1];
      for(int i=0;i<stones.length;i++)
      for(int j=target;j>=stones[i];j--){
            dp[j]=Math.max(dp[j],dp[j-stones[i]]+stones[i]);
      }
         return sum-dp[target]-dp[target];
    }
 
}

注意:在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的


494. 目标和

给你一个非负整数数组 nums 和一个整数 target

向数组中的每个整数前添加 '+''-' ,然后串联起所有整数,可以构造一个 表达式

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1"

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

复制代码
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

复制代码
输入:nums = [1], target = 1
输出:1

提示:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • -1000 <= target <= 1000

思路:

假设加法的总和为x,那么减法对应的总和就是sum - x。

所以我们要求的是 x - (sum - x) = target

x = (target + sum) / 2

此时问题就转化为,装满容量为x的背包,有几种方法

由于数组中的数都是整数,所以加法总和x一定是整数,如果(target + sum) / 2不是整数,意味着无解,return 0

与此同时,如果target的绝对值已经大于sum,那么也是没有方案的。

动态规划:

1.确定dp数组以及下标的含义

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

2.确定递推公式

得到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

java 复制代码
dp[j] += dp[j - nums[i]]

3.dp数组如何初始化

在初始化的时候dp[0] 一定要初始化为1,如果dp[0]是0的话,递推结果将都是0

4.确定遍历顺序

dp[j] += dp[j - nums[i]]可知,dp[j]都由之前的推出,所以从右往左遍历(一维dp数组)

对于01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。

5.举例推导

代码参考:

java 复制代码
class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        int sum=0;
        for(int i=0;i<nums.length;i++){
            sum+=nums[i];
        }
    
   //x = (target + sum) / 2
   int x=(target+sum)/2;
   if((target+sum)%2==1) return 0;
   if(Math.abs(target)>sum) return 0;
   int[] dp=new int[x+1];
   //初始化
   dp[0]=1;
   for(int i=0;i<nums.length;i++){
    for(int j=x;j>=nums[i];j--){
        dp[j]+=dp[j-nums[i]];
    }
   
   }
    return dp[x];
    }
}

474. 一和零

给你一个二进制字符串数组 strs 和两个整数 mn

请你找出并返回 strs 的最大子集的长度,该子集中 最多m0n1

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y子集

示例 1:

复制代码
输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

复制代码
输入:strs = ["10", "0", "1"], m = 1, n = 1
输出:2
解释:最大的子集是 {"0", "1"} ,所以答案是 2 。

思路:

动规五部曲:

1.确定dp数组(dp table)以及下标的含义

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]

2.确定递推公式

dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i])。

这就是一个典型的01背包! 只不过物品的重量有了两个维度而已。

3.初始化

0,1个数不会为负数,dp数组初始化为0,保证递推的时候dp[i][j]不会被初始值覆盖。

4.确定递归顺序

类似与01背包一维dp数组的遍历顺序,外层遍历所有字符串,内层从右往左遍历

5.举例

代码参考:

java 复制代码
class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
      int[][]dp=new int[m+1][n+1];
      int zeroNum=0;
      int oneNum=0;
      //dp数组默认初始化都为0
      //遍历字符串
      for(int i=0;i<strs.length;i++){
        zeroNum=0;
        oneNum=0;
        //统计字符串的o1个数
         for(int k=0;k<strs[i].length();k++){
            if(strs[i].charAt(k)=='0'){
                zeroNum++;
            }else{
                oneNum++;
            }
         }
            //更新dp数组
        for(int  j=m;j>=zeroNum;j--){
            for(int l=n;l>=oneNum;l--){
                dp[j][l]=Math.max(dp[j][l],dp[j-zeroNum][l-oneNum]+1);
            }
        }
      }
      return dp[m][n];
    }
}
相关推荐
88号技师1 小时前
2024年12月一区SCI-加权平均优化算法Weighted average algorithm-附Matlab免费代码
人工智能·算法·matlab·优化算法
IT猿手1 小时前
多目标应用(一):多目标麋鹿优化算法(MOEHO)求解10个工程应用,提供完整MATLAB代码
开发语言·人工智能·算法·机器学习·matlab
88号技师1 小时前
几款性能优秀的差分进化算法DE(SaDE、JADE,SHADE,LSHADE、LSHADE_SPACMA、LSHADE_EpSin)-附Matlab免费代码
开发语言·人工智能·算法·matlab·优化算法
我要学编程(ಥ_ಥ)2 小时前
一文详解“二叉树中的深搜“在算法中的应用
java·数据结构·算法·leetcode·深度优先
埃菲尔铁塔_CV算法2 小时前
FTT变换Matlab代码解释及应用场景
算法
许野平3 小时前
Rust: enum 和 i32 的区别和互换
python·算法·rust·enum·i32
chenziang13 小时前
leetcode hot100 合并区间
算法
chenziang13 小时前
leetcode hot100 对称二叉树
算法·leetcode·职场和发展
szuzhan.gy4 小时前
DS查找—二叉树平衡因子
数据结构·c++·算法
一只码代码的章鱼4 小时前
排序算法 (插入,选择,冒泡,希尔,快速,归并,堆排序)
数据结构·算法·排序算法