机器学习和深度学习 -- 李宏毅(笔记与个人理解)Day19

Day 19 Recurrent Neural Network (RNN 1)

md 发现我最近需要恶补一下vue的技术......服了(因为有两个项目要交单子了)

好吧导致我停更新两天的DL,我去如坐针毡啊!今天补上

  • Slot Filling

将词语用向量的形式来表示;

提问:中文如何处理?


检测不到 前面的那个词语;

提问: 为什么不把整句话输入进去?

这样应该可以,但是如果是一个很长的段落呢?把整篇文章进行encode 是不合理的

needs memory

(Elman ) Recurrent Neural Network(RNN)

把这个流程走通!!!! 一定记得走通哈

Then we have a model which can store the order

考量时间顺序的那个kaggle

提问: 如果我们的nlp呢? 有一些倒装句应该如何处理使得其语义相同?

Elman & Jordan Network

这两个图如果看不懂的话 说明没有弄懂上面的 流程

Bidirectional RNN

检测范围较广,不仅上文, 还有下文;用来解决倒装句比较不错哈

Long short -term Memory (LSTM)

正常的输入和三个控制门讯号的输入

和RNN比较起来, 强化了对整体序列的记忆;并且可以 认为的通过lable 训练出需要记忆的重点序列
内部逻辑图!需要重点掌握哦!

  • "h" 通常表示 LSTM(长短期记忆网络)的输出门中使用的激活函数。在 LSTM 单元中,输出门决定了有多少当前单元状态要输出到下一个时间步骤。这个 "h" 函数通常是一个 sigmoid 函数。
  • "g" 表示在计算新的单元状态时使用的激活函数。这个函数通常是一个能够输出较宽范围的函数,例如双曲正切函数(tanh),其输出范围是 -1 到 1。这允许网络调整其内部状态,通过结合之前的状态和当前的输入。

这里我也不明白为什么要弄两个激活函数? 是普通的network 也是两次激活函数吗?

需要注意的一点是 forget gate 的取值 ,应该交 remember gate 会好一些
来吧 ,整个LSTM 最重要的ppt ,走动这个ppt 你就懂了LSTM的工作原理

如何理解LSTM和普通network的关系?

图中的+ 代表我的输入; 小圈圈代表激活函数; 划线代表不同的weight
太扯淡了! 好复杂的鬼东西

BUt

this is quite standard now

相关推荐
CoovallyAIHub5 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
CoovallyAIHub5 小时前
开源的消逝与新生:从 TensorFlow 的落幕到开源生态的蜕变
pytorch·深度学习·llm
CoovallyAIHub11 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
使一颗心免于哀伤11 小时前
《设计模式之禅》笔记摘录 - 21.状态模式
笔记·设计模式
CoovallyAIHub11 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
AI小云2 天前
【机器学习与实战】回归分析与预测:线性回归-03-损失函数与梯度下降
机器学习
_落纸2 天前
三大基础无源电子元件——电阻(R)、电感(L)、电容(C)
笔记
隐语SecretFlow2 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Alice-YUE2 天前
【CSS学习笔记3】css特性
前端·css·笔记·html