机器学习和深度学习 -- 李宏毅(笔记与个人理解)Day19

Day 19 Recurrent Neural Network (RNN 1)

md 发现我最近需要恶补一下vue的技术......服了(因为有两个项目要交单子了)

好吧导致我停更新两天的DL,我去如坐针毡啊!今天补上

  • Slot Filling

将词语用向量的形式来表示;

提问:中文如何处理?


检测不到 前面的那个词语;

提问: 为什么不把整句话输入进去?

这样应该可以,但是如果是一个很长的段落呢?把整篇文章进行encode 是不合理的

needs memory

(Elman ) Recurrent Neural Network(RNN)

把这个流程走通!!!! 一定记得走通哈

Then we have a model which can store the order

考量时间顺序的那个kaggle

提问: 如果我们的nlp呢? 有一些倒装句应该如何处理使得其语义相同?

Elman & Jordan Network

这两个图如果看不懂的话 说明没有弄懂上面的 流程

Bidirectional RNN

检测范围较广,不仅上文, 还有下文;用来解决倒装句比较不错哈

Long short -term Memory (LSTM)

正常的输入和三个控制门讯号的输入

和RNN比较起来, 强化了对整体序列的记忆;并且可以 认为的通过lable 训练出需要记忆的重点序列
内部逻辑图!需要重点掌握哦!

  • "h" 通常表示 LSTM(长短期记忆网络)的输出门中使用的激活函数。在 LSTM 单元中,输出门决定了有多少当前单元状态要输出到下一个时间步骤。这个 "h" 函数通常是一个 sigmoid 函数。
  • "g" 表示在计算新的单元状态时使用的激活函数。这个函数通常是一个能够输出较宽范围的函数,例如双曲正切函数(tanh),其输出范围是 -1 到 1。这允许网络调整其内部状态,通过结合之前的状态和当前的输入。

这里我也不明白为什么要弄两个激活函数? 是普通的network 也是两次激活函数吗?

需要注意的一点是 forget gate 的取值 ,应该交 remember gate 会好一些
来吧 ,整个LSTM 最重要的ppt ,走动这个ppt 你就懂了LSTM的工作原理

如何理解LSTM和普通network的关系?

图中的+ 代表我的输入; 小圈圈代表激活函数; 划线代表不同的weight
太扯淡了! 好复杂的鬼东西

BUt

this is quite standard now

相关推荐
求真求知的糖葫芦2 小时前
巴伦学习(三.一)一种可以实现阻抗变换的平面Marchand巴伦的公式推导学习笔记(下)(自用)
笔记·学习·平面
金色光环2 小时前
stm32 usb的学习与使用笔记
笔记·stm32·学习
Loqate地址智能2 小时前
机器学习如何破解全球欺诈工业化?实时检测+设备智能识别,反欺诈技术实操方案
大数据·人工智能·安全·机器学习
暴躁小师兄数据学院2 小时前
【WEB3.0零基础转行笔记】Go编程篇-第6讲:函数与包
笔记·golang·web3·区块链·智能合约
社会零时工3 小时前
机械臂末端2D相机自动对焦应用
arm开发·机器学习
励ℳ3 小时前
机器学习之线性回归算法:从原理到实践的全面解析
算法·机器学习·线性回归
骥龙3 小时前
第八篇:成效篇 - 数字说话:平台上线一年的ROI分析
大数据·人工智能·机器学习
玖&司3 小时前
机器学习中的多层感知机(MLP)
人工智能·机器学习
Songbl_3 小时前
机器学习特征工程
人工智能·机器学习
weisian1513 小时前
进阶篇-机器学习篇-2--机器学习数学基础:不用啃课本,够用就行
人工智能·机器学习