机器学习和深度学习 -- 李宏毅(笔记与个人理解)Day19

Day 19 Recurrent Neural Network (RNN 1)

md 发现我最近需要恶补一下vue的技术......服了(因为有两个项目要交单子了)

好吧导致我停更新两天的DL,我去如坐针毡啊!今天补上

  • Slot Filling

将词语用向量的形式来表示;

提问:中文如何处理?


检测不到 前面的那个词语;

提问: 为什么不把整句话输入进去?

这样应该可以,但是如果是一个很长的段落呢?把整篇文章进行encode 是不合理的

needs memory

(Elman ) Recurrent Neural Network(RNN)

把这个流程走通!!!! 一定记得走通哈

Then we have a model which can store the order

考量时间顺序的那个kaggle

提问: 如果我们的nlp呢? 有一些倒装句应该如何处理使得其语义相同?

Elman & Jordan Network

这两个图如果看不懂的话 说明没有弄懂上面的 流程

Bidirectional RNN

检测范围较广,不仅上文, 还有下文;用来解决倒装句比较不错哈

Long short -term Memory (LSTM)

正常的输入和三个控制门讯号的输入

和RNN比较起来, 强化了对整体序列的记忆;并且可以 认为的通过lable 训练出需要记忆的重点序列
内部逻辑图!需要重点掌握哦!

  • "h" 通常表示 LSTM(长短期记忆网络)的输出门中使用的激活函数。在 LSTM 单元中,输出门决定了有多少当前单元状态要输出到下一个时间步骤。这个 "h" 函数通常是一个 sigmoid 函数。
  • "g" 表示在计算新的单元状态时使用的激活函数。这个函数通常是一个能够输出较宽范围的函数,例如双曲正切函数(tanh),其输出范围是 -1 到 1。这允许网络调整其内部状态,通过结合之前的状态和当前的输入。

这里我也不明白为什么要弄两个激活函数? 是普通的network 也是两次激活函数吗?

需要注意的一点是 forget gate 的取值 ,应该交 remember gate 会好一些
来吧 ,整个LSTM 最重要的ppt ,走动这个ppt 你就懂了LSTM的工作原理

如何理解LSTM和普通network的关系?

图中的+ 代表我的输入; 小圈圈代表激活函数; 划线代表不同的weight
太扯淡了! 好复杂的鬼东西

BUt

this is quite standard now

相关推荐
gorgeous(๑>؂<๑)19 分钟前
【ICLR26-Oral Paper-字节跳动】推理即表征:重新思考图像质量评估中的视觉强化学习
人工智能·深度学习·神经网络·机器学习·计算机视觉
2501_9269783320 分钟前
从Prompt的“结构-参数”到多AI的“协作-分工”--底层逻辑的同构分化
大数据·人工智能·机器学习
狮子座明仔23 分钟前
MemFly:当智能体的记忆学会了“断舍离“——信息瓶颈驱动的即时记忆优化
人工智能·深度学习·语言模型·自然语言处理
啊哈哈1213843 分钟前
SQL学习笔记7:综合查询与高级技巧全解析 + LeetCode实战
笔记·sql·学习
菩提小狗2 小时前
第17天:信息打点-语言框架&开发组件&FastJson&Shiro&Log4j_笔记|小迪安全2023-2024|web安全|渗透测试|
笔记·安全·log4j
240291003372 小时前
自编码器(AE)与变分自编码器(VAE)-- 认识篇
python·神经网络·机器学习
蒸蒸yyyyzwd2 小时前
后端学习笔记计网
笔记·学习
啊阿狸不会拉杆3 小时前
《计算机视觉:模型、学习和推理》第 6 章-视觉学习和推理
人工智能·学习·算法·机器学习·计算机视觉·生成模型·判别模型
是小蟹呀^3 小时前
【论文比较】从 DeepSRC 到 BSSR:当“稀疏表示”遇上“深度学习”,算法是如何进化的?
深度学习·分类·deepsrc·bssr
狮子座明仔3 小时前
当RAG的“压缩包“爆了:如何检测Token溢出?
人工智能·机器学习·语言模型·自然语言处理