神经网络基础

神经网络

1.神经网络基础

1.1线性函数

x为图像,W为权重值,f输出对于该图像的得分值

以图片(图像以3232 3=3072为例)分类(10类)为例:

f值(101)就是对一张图像的类别打分值;
W(10
3072)包含对3072个像素点每一点的权重值;

x(30721)图像的列向量;
b(10
1)每一个类别的偏移量(感觉像消除误差的)

以3类图像,图像为2*2的为例

1.2损失函数

结果的得分值可以指出模型的当前效果,有多好或是多差!

损失函数Li (越小越好,越大表示分类效果越差)中sj 为该图像在其他类别中的得分值,syi 为该图像在自己类别中的打分;其中+1是为了防止得分比较近的时候,使得误判损失为0(如:第一幅图打分为3.2,3.15,-1.7,则计算cat和car之间的损失时,不加1,输出为0,表示两者无误差,但实际是不对的),也就是让正确类别比错误类别高于1以上才无损失。


R(W)为所有权重阵的平方和,λ惩罚系数,越大表示不希望过拟合,削减奇异值,越小表示削减程度小点。

1.3激活函数

使得得分值的范围归到0-1之间

第一列为类别的得分值;第二列为exp(得分);第三列为归一化(第二列每个值都除以所有的求和值),最后求-log(越接近0表示损失越小,分类越好)

1.4前向传播





1.5反向传播

链式求导法则

图中,绿色表示相应的输入量,红色表示链式求导的逆向输出值(如:1/x的导数为-1/x2 ,x=1.37,输出为下面的-0.53)

该图表示:加法的导数都为1,MAX的导数是输入最大的变量导数为整个输出;

乘法导数互换。

1.6整体框架


隐藏层:对输入的每个数据都附上权重值(几个圆(神经元)代表有多少种 权重)。

每一隐藏层后都进行非线性变化(激活函数,如sigmoid,max)。

神经元越多过拟合程度也越大,效果可能越好,但速度越慢
斯坦福大学可视化神经网络训练

惩罚力度越大过拟合效果越弱。

隐藏层神经元一般为64,128,256,512。可见神经元数目越多过拟合越大


sigmoid函数当自变量过大会出现梯度消失,变为0.

1.7数据预处理


形成权重矩阵(D*H的矩阵)

在每一层中随机选取少量神经元参与计算,以此避免过拟合。
总结:

输入数据经过预处理,*W1------>激活函数...*Wn------>激活函数,输出。

之后计算损失函数,通过反向传播对每一个参数进行求导,以修正参数值。

2.卷积神经网络(CNN)

输入不再是列向量,而直接是一张图像

2.1卷积

三通道图像:每一通道都进行卷积,之后相加。

有多个卷积核就会输出几层特征图。(图中bias表示w*x+b中的b偏移量)





2.2池化层

降低特征图的大小,也称压缩或下采样

在每个区域选择最大的值,只将特征图中重要的特征提取出来。

上图为一个七层的卷积神经网络(只有带参数计算的才算一层:6个卷积+1个全连接层FC),在最后的池化和FC之间还有一步将三维的特征块,转化成列/行向量(即下图中转换)。

2.3感受野

图中表示:input经过一次卷积,输出为粉色区域,第二次卷积输出为一个粉色格。

所需参数个数:77 C中C表示输入为C层,C*(77C)左侧C表示需要C个卷积核。右同。

2.4Resnet

对于层数越多效果反而不好的,采取Resnet残差网络。

即,在本来流程中的每一层(经卷积)中都加入一个直接连接到下一层的线路,保证当网络经过训练后,本层中权重参数不适合时,去掉后不影响之后的网络(保证不会比层数少的时候效果差)。

3.循环(递归)神经网络


h表示每个时刻的结果,即当前隐藏状态,作为下一时刻的输入。

3.1 LSTM






3.2自然语言处理(NLP)-词向量模型(Word2Vec)

即对每一个特征进行打分[-1,1],最后形成向量形式。






4.对抗生成网络(GAN)



参考资料:神经网络入门到实战

相关推荐
ElfBoard3 分钟前
ElfBoard技术贴|如何在【RK3588】ELF 2开发板上进行UART引脚复用配置
人工智能·单片机·嵌入式硬件·物联网
paperxie_xiexuo31 分钟前
七款 AI PPT 工具新解:智能驱动演示升级,解锁多元创作场景
大数据·人工智能·powerpoint·大学生·ppt
大模型实验室Lab4AI36 分钟前
VideoLLaMA 3新一代前沿多模态基础模型赋能图像与视频深度理解| LLM | 计算机视觉
人工智能·计算机视觉·音视频
还不秃顶的计科生1 小时前
如何快速用cmd知道某个文件夹下的子文件以及子文件夹的这个目录分支具体的分支结构
人工智能
九河云1 小时前
不同级别华为云代理商的增值服务内容与质量差异分析
大数据·服务器·人工智能·科技·华为云
Elastic 中国社区官方博客1 小时前
Elasticsearch:Microsoft Azure AI Foundry Agent Service 中用于提供可靠信息和编排的上下文引擎
大数据·人工智能·elasticsearch·microsoft·搜索引擎·全文检索·azure
大模型真好玩1 小时前
Gemini3.0深度解析,它在重新定义智能,会是前端工程师噩梦吗?
人工智能·agent·deepseek
机器之心2 小时前
AI终于学会「读懂人心」,带飞DeepSeek R1,OpenAI o3等模型
人工智能·openai
AAA修煤气灶刘哥2 小时前
从Coze、Dify到Y-Agent Studio:我的Agent开发体验大升级
人工智能·低代码·agent
陈佬昔没带相机2 小时前
MiniMax M2 + Trae 编码评测:能否与 Claude 4.5 扳手腕?
前端·人工智能·ai编程