使用yolov8 进行实例分割训练

1、基于windows 的ISAM标注

直接下载安装包,解压后即可使用

链接:https://pan.baidu.com/s/1u_6jk-7sj4CUK1DC0fDEXQ

提取码:c780

2、标注结果转yolo格式

通过ISAM标注后的json文件路径

原始json格式如下:

ISAM.json 转 yolo.txt 代码如下:

注意提前设置好自己的分类category_mapping 、原始路径及目标路径

import json
import os

# 定义类别名称与ID号的映射
# 需要注意的是,不需要按照ISAT的classesition.txt里面的定义来
# 可以选择部分自己需要的类别, ID序号也可以重新填写(从0开始)

category_mapping = {"hand":0, "body": 1, "head":2,"foot":3,"qunzi":4,"hair":5,"hat":6,"package":7,"huxu":8,"glass":9,"tool":10}
# ISAT格式的实例分割标注文件
ISAT_FOLDER = "./isam/source/"
# YOLO格式的实例分割标注文件
YOLO_FOLDER = "./isam/dest"

# 创建YoloV8标注的文件夹
if not os.path.exists(YOLO_FOLDER):
    os.makedirs(YOLO_FOLDER)

# 载入所有的ISAT的JSON文件
for filename in os.listdir(ISAT_FOLDER):
    if not filename.endswith(".json"):
        # 不是json格式, 跳过
        continue
    # 载入ISAT的JSON文件
    with open(os.path.join(ISAT_FOLDER, filename), "r") as f:
        isat = json.load(f)
    # 提取文件名(不带文件后缀)
    image_name = filename.split(".")[0]
    # Yolo格式的标注文件名, 后缀是txt
    yolo_filename = f"{image_name}.txt"
    # 写入信息
    with open(os.path.join(YOLO_FOLDER, yolo_filename), "w") as f:
        # 获取图像信息
        # - 图像宽度 
        image_width = isat["info"]["width"]
        # - 图像高度
        image_height = isat["info"]["height"]
        # print(isat["objects"])
        # 获取实例标注数据
        for annotation in isat["objects"]:
            # 获取类别名称
            category_name = annotation["category"]
            # print(category_name)
            # 如果不在类别名称字典里面,跳过
            if category_name not in category_mapping:
                continue
            # 从字典里面查询类别ID
            category_id = category_mapping[category_name]
            # 提取分割信息
            segmentation = annotation["segmentation"]
            segmentation_yolo = []
            # 遍历所有的轮廓点
            print(segmentation)
            for segment in segmentation:
                # 提取轮廓点的像素坐标 x, y
                x, y = segment
                # 归一化处理
                x_center = x/image_width
                y_center = y/image_height
                # 添加到segmentation_yolo里面
                segmentation_yolo.append(f"{x_center:.4f} {y_center:.4f}")
            segmentation_yolo_str = " ".join(segmentation_yolo)
            # 添加一行Yolo格式的实例分割数据
            # 格式如下: class_id x1 y1 x2 y2 ... xn yn\n
            f.write(f"{category_id} {segmentation_yolo_str}\n")

转化后文件内容:

3、准备训练数据

注意安装依赖

pip install tqdm -i https://mirrors.aliyun.com/pypi/simple

import os
import random
from tqdm import tqdm

# 指定 images 文件夹路径
image_dir = "./isam/images"
# 指定 labels 文件夹路径
label_dir = "./isam/labels"
# 创建一个空列表来存储有效图片的路径
valid_images = []
# 创建一个空列表来存储有效 label 的路径
valid_labels = []
# 遍历 images 文件夹下的所有图片
for image_name in os.listdir(image_dir):
    # 获取图片的完整路径
    image_path = os.path.join(image_dir, image_name)
    # 获取图片文件的扩展名
    ext = os.path.splitext(image_name)[-1]
    # 根据扩展名替换成对应的 label 文件名
    label_name = image_name.replace(ext, ".txt")
    # 获取对应 label 的完整路径
    label_path = os.path.join(label_dir, label_name)
    # 判断 label 是否存在
    if not os.path.exists(label_path):
        # 删除图片
        os.remove(image_path)
        print("deleted:", image_path)
    else:
        # 将图片路径添加到列表中
        valid_images.append(image_path)
        # 将label路径添加到列表中
        valid_labels.append(label_path)
        # print("valid:", image_path, label_path)

dirs = ["./isam/datasets/test", "./isam/datasets/train", "./isam/datasets/valid"]
for d in dirs:
    _dir = os.path.join(d, "images")
    if not os.path.exists(_dir):
        os.makedirs(_dir)
    _dir = os.path.join(d, "labels")
    if not os.path.exists(_dir):
        os.makedirs(_dir)


# 遍历每个有效图片路径
for i in tqdm(range(len(valid_images))):
    image_path = valid_images[i]
    label_path = valid_labels[i]
    # 随机生成一个概率
    r = random.random()
    # 判断图片应该移动到哪个文件夹
    # train:valid:test = 7:2:1
    if r < 0.1:
        # 移动到 test 文件夹
        destination = "./isam/datasets/test"
    elif r < 0.3:
        # 移动到 valid 文件夹
        destination = "./isam/datasets/valid"
    else:
        # 移动到 train 文件夹
        destination = "./isam/datasets/train"
    
    # 生成目标文件夹中图片的新路径
    image_destination_path = os.path.join(destination, "images", os.path.basename(image_path))
    # 移动图片到目标文件夹
    os.rename(image_path, image_destination_path)
    # 生成目标文件夹中 label 的新路径
    label_destination_path = os.path.join(destination, "labels", os.path.basename(label_path))
    # 移动 label 到目标文件夹
    os.rename(label_path, label_destination_path)
print("train images:", train_images)
# 输出有效label路径列表
print("train labels:", train_labels)

数据集分割结果

4、创建conda虚拟环境

conda create -n yolov8 python=3.10

conda activate yolov8

下载yolov8.2 代码

GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite

安装依赖

pip install ultralytics

5、准备训练配置文件

下载预训练模型,放在项目根路径

yolov8n-seg.pt

yolov8n.pt

下载ttf文件 存放位置 /root/.config/Ultralytics/Arial.ttf

在datasets目录下添加文件

1、coco128-seg.yaml注意classes类型与之前标注的一致

# Ultralytics YOLO  , AGPL-3.0 license
# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128-seg  ← downloads here (7 MB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets  # dataset root dir
train: train/images  # train images (relative to 'path') 128 images
val: valid/images  # val images (relative to 'path') 128 images
test: test/images # test images (optional)

# Classes  {"hand":0, "body": 1, "head":2,"foot":3,"qunzi":4,"hair":5,"hat":6,"package":7,"huxu":8,"glass":9,"tool":10}
names:
  0: hand
  1: body
  2: head
  3: foot
  4: qunzi
  5: hair
  6: hat
  7: package
  8: huxu
  9: glass
  10: tool

2、yolov8-seg.yaml 修改nc 分类个数即可

# Ultralytics YOLO  , AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segmenthttps://docs.ultralytics.com/tasks/segment

# Parameters
nc: 11  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]
  s: [0.33, 0.50, 1024]
  m: [0.67, 0.75, 768]
  l: [1.00, 1.00, 512]
  x: [1.00, 1.25, 512]

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Segment, [nc, 32, 256]]  # Segment(P3, P4, P5)

6、开始训练

在根目录下添加train.py 文件

执行 python train.py

from ultralytics import YOLO

# Load a model
model = YOLO("datasets/yolov8-seg.yaml")  # build a new model from scratch
model = YOLO('yolov8n-seg.pt')  # load a pretrained model (recommended for training)
model = YOLO('datasets/yolov8-seg.yaml').load('yolov8n.pt')  # build from YAML and transfer weights

# Use the model
model.train(data="datasets/coco128-seg.yaml", task="segment",mode="train",workers=0,batch=4,epochs=300,device=0)  # train the model

训练结果保存位置 Results saved to runs/segment/trainX

7、运行模型预测

编写 predict.py 脚本,执行 python predict.py

from ultralytics import YOLO
import cv2
# Load a model
model = YOLO('yolov8n-seg.pt')  # load an official model
model = YOLO('runs/segment/train/weights/best.pt')  # load a custom trained

# Predict with the model
result = model('14.png',save=True)  # predict on an image

预测结果保存位置 Results saved to runs/segment/predict

8、导出onnx文件

# export_onnx.py

from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n-seg.pt')  # load an official model
model = YOLO('runs/segment/train/best.pt')  # load a custom trained

# Export the model
model.export(format='onnx')

本文参考:

ISAM一款基于SAM的交互式半自动图像分割标注工具

SAM标注+yolov8-seg实例分割的实时检测-知乎

yolov8文档

相关推荐
果冻人工智能8 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工9 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz11 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
孤独且没人爱的纸鹤20 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭23 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~24 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码30 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng113330 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike31 分钟前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇32 分钟前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow