UniRepLknet助力YOLOv8:高效特征提取与目标检测性能优化YOLOv8 作为目标检测领域的重要模型,其强大的实时检测能力和灵活的架构使其在众多应用场景中备受关注。然而,任何模型都有进一步优化的空间,尤其是在特征提取这一关键环节。2024 年 12 月,UniRepLknet 特征提取网络的提出为 YOLOv8 的改进带来了新的思路。UniRepLknet 通过独特的网络架构设计,在图像分类、目标检测和语义分割等视觉任务中展现了卓越的性能。本文将详细介绍 UniRepLknet 的架构原理、改进方法以及与传统网络的对比试验效果。