3 命名实体识别调优化

能走到这里说明你对模型微调有了一个基本的认识。那么开始一段命名实体的任务过程,下面使用huggingface官网的数据。

1 准备模型

下面的模型自己选择一个吧,我的内存太第一个模型跑不了。

https://huggingface.co/ckiplab/bert-base-chinese-ner/tree/main

2 准备数据

https://huggingface.co/datasets/peoples_daily_ner

3 训练

评估指标

https://huggingface.co/spaces/evaluate-metric/seqeval

复制代码
import evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer, DataCollatorForTokenClassification

# 如果可以联网,直接使用load_dataset进行加载
#ner_datasets = load_dataset("peoples_daily_ner", cache_dir="./data")
# 如果无法联网,则使用下面的方式加载数据集
from datasets import DatasetDict
ner_datasets = DatasetDict.load_from_disk("../data/ner_data/")
ner_datasets

tokenizer = AutoTokenizer.from_pretrained("/Users/user/studyFile/2024/nlp/bert_base_chinese_ner/")

# 借助word_ids 实现标签映射
def process_function(examples):
    tokenized_exmaples = tokenizer(examples["tokens"], max_length=128, truncation=True, is_split_into_words=True)
    labels = []
    for i, label in enumerate(examples["ner_tags"]):
        word_ids = tokenized_exmaples.word_ids(batch_index=i)
        label_ids = []
        for word_id in word_ids:
            if word_id is None:
                label_ids.append(-100)
            else:
                label_ids.append(label[word_id])
        labels.append(label_ids)
    tokenized_exmaples["labels"] = labels
    return tokenized_exmaples
tokenized_datasets = ner_datasets.map(process_function, batched=True)
tokenized_datasets

# 自己定义数据的类别个数
label_list = ner_datasets["train"].features["ner_tags"].feature.names


#model = AutoModelForTokenClassification.from_pretrained("../bert_base_chinese_ner/", num_labels=len(label_list))
import torch
model = AutoModelForTokenClassification.from_pretrained("../bert_base_chinese_ner/",num_labels=len(label_list),ignore_mismatched_sizes=True)
#model.num_labels = len(label_list)
#num_labels = len(label_list)
#model.classifier.out_proj.weight.data = torch.nn.functional.linear(model.classifier.weight, (model.classifier.weight.shape[0] / num_labels)) 
#model.classifier.out_proj.bias.data = model.classifier.bias
 

# 这里方便大家加载,替换成了本地的加载方式,无需额外下载
seqeval = evaluate.load("seqeval_metric.py")
seqeval

import numpy as np
# 自定义评估指标
def eval_metric(pred):
    predictions, labels = pred
    predictions = np.argmax(predictions, axis=-1)

    # 将id转换为原始的字符串类型的标签
    true_predictions = [
        [label_list[p] for p, l in zip(prediction, label) if l != -100]
        for prediction, label in zip(predictions, labels) 
    ]

    true_labels = [
        [label_list[l] for p, l in zip(prediction, label) if l != -100]
        for prediction, label in zip(predictions, labels) 
    ]

    result = seqeval.compute(predictions=true_predictions, references=true_labels, mode="strict", scheme="IOB2")

    return {
        "f1": result["overall_f1"]
    }
    
args = TrainingArguments(
    output_dir="models_for_ner",
    per_device_train_batch_size=64,
    per_device_eval_batch_size=128,
    evaluation_strategy="epoch",
    save_strategy="epoch",
    metric_for_best_model="f1",
    load_best_model_at_end=True,
    logging_steps=50,
    num_train_epochs=1
)

trainer = Trainer(
    model=model,
    args=args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["validation"],
    compute_metrics=eval_metric,
    data_collator=DataCollatorForTokenClassification(tokenizer=tokenizer)
)
trainer.train()

训练的过程太慢了。

相关推荐
ZZY_dl3 分钟前
训练数据集(三):真实场景下采集的课堂行为目标检测数据集,可直接用于YOLO各版本训练
人工智能·yolo·目标检测
yiersansiwu123d26 分钟前
AI伦理治理:在创新与规范之间寻找动态平衡
人工智能
华清远见成都中心1 小时前
成都理工大学&华清远见成都中心实训,助力电商人才培养
大数据·人工智能·嵌入式
爱好读书1 小时前
AI生成er图/SQL生成er图在线工具
人工智能
CNRio1 小时前
智能影像:AI视频生成技术的战略布局与产业变革
人工智能
六行神算API-天璇1 小时前
架构思考:大模型作为医疗科研的“智能中间件”
人工智能·中间件·架构·数据挖掘·ar
搞科研的小刘选手2 小时前
【ISSN/ISBN双刊号】第三届电力电子与人工智能国际学术会议(PEAI 2026)
图像处理·人工智能·算法·电力电子·学术会议
wumingxiaoyao2 小时前
AI - 使用 Google ADK 创建你的第一个 AI Agent
人工智能·ai·ai agent·google adk
拉姆哥的小屋2 小时前
从混沌到秩序:条件扩散模型在图像转换中的哲学与技术革命
人工智能·算法·机器学习
Sammyyyyy2 小时前
DeepSeek v3.2 正式发布,对标 GPT-5
开发语言·人工智能·gpt·算法·servbay