用 Python 创建 Voronoi 图

概述

最常见的空间问题之一是找到距离我们当前位置最近的兴趣点 (POI)。假设有人很快就会耗尽汽油,他/她需要在为时已晚之前找到最近的加油站,解决这个问题的最佳解决方案是什么?当然,驾驶员可以检查地图来找到最近的加油站,但如果该地区有多个加油站,并且他/她需要快速确定哪个加油站是最近的,则可能会出现问题。最好的解决方案是用多边形内的点来表示每个 POI。所以在多边形内,最近的 POI 肯定是多边形内的点。这些多边形称为 Voronoi 区域。

数据采集

在这个项目中,我根据 POI 数据在地图上创建 Voronoi 区域。所有 POI 数据都是随机选择的,而街道网络数据则借助 OSMnx 包从 OpenStreetMap 下载。

创建 Voronoi 区域

目前使用 Python 构建 Voronoi 区域的最简单方法是使用 geovoronoi 包。 Geovoronoi 是一个用于在地理区域内创建和绘制 Voronoi 区域的软件包。至于地图可视化,我选择 folium 包。

首先,我首先在地图周围创建随机点。

ax 复制代码
gdf = gpd.GeoDataFrame()
gdf = gdf.append({'geometry': Point(106.644085,-6.305286)}, ignore_index=True)
gdf = gdf.append({'geometry': Point(106.653261,-6.301309)}, ignore_index=True)
gdf = gdf.append({'geometry': Point(106.637751,-6.284774)}, ignore_index=True)
gdf = gdf.append({'geometry': Point(106.665062,-6.284598)}, ignore_index=True)
gdf = gdf.append({'geometry': Point(106.627582,-6.283521)}, ignore_index=True)
gdf = gdf.append({'geometry': Point(106.641365,-6.276593)}, ignore_index=True)
gdf = gdf.append({'geometry': Point(106.625972,-6.303643)}, ignore_index=True)

下一步是确定 Voronoi 区域的覆盖范围并将其保存到地理数据框中。

ax 复制代码
area_max_lon = 106.670929
area_min_lon = 106.619602
area_max_lat = -6.275227
area_min_lat = -6.309795

lat_point_list = [area_min_lat, area_max_lat,area_max_lat,area_min_lat]
lon_point_list = [area_min_lon, area_min_lon, area_max_lon, area_max_lon]

polygon_geom = Polygon(zip(lon_point_list, lat_point_list))
boundary = gpd.GeoDataFrame()
boundary = boundary.append({'geometry': polygon_geom}, ignore_index=True)

不要忘记将 gdf 和边界数据帧转换为 Web 墨卡托投影。

ax 复制代码
gdf.crs = {'init' :'epsg:3395'}
boundary.crs = {'init' :'epsg:3395'}

将边界几何数据帧转换为多边形和 POI 数据帧的并集转换为坐标数组。

ax 复制代码
boundary_shape = cascaded_union(boundary.geometry)
coords = points_to_coords(gdf.geometry)>

计算 Voronoi 区域。

ax 复制代码
poly_shapes, pts, poly_to_pt_assignments = voronoi_regions_from_coords(coords, boundary_shape)

在覆盖区域的边界内从 OpenStreetMap 创建图形。使用图表收集覆盖区域边界内的所有街道网络并将其保存到数据框中。

ax 复制代码
G = ox.graph_from_polygon(boundary_shape, network_type='all_private')
gdf_all_streets =  ox.graph_to_gdfs(G, nodes=False, edges=True,node_geometry=False, fill_edge_geometry=True)

创建新的数据框来收集每个 Voronoi 区域内的街道网络

ax 复制代码
gdf_streets_by_region = gpd.GeoDataFrame()
for x in range(len(poly_shapes)):
    gdf_streets = gpd.GeoDataFrame()
    gdf_streets['geometry'] = gdf_all_streets.intersection(poly_shapes[x])
    gdf_streets['voronoi_region'] = x
    gdf_streets = gdf_streets[gdf_streets['geometry'].astype(str) != 'LINESTRING EMPTY']
    gdf_streets_by_region = gdf_streets_by_region.append(gdf_streets)

下面是地图上 Voronoi 区域的可视化。

结论

地图看起来很棒!

相关推荐
陈天伟教授6 小时前
人工智能训练师认证教程(2)Python os入门教程
前端·数据库·python
2301_764441336 小时前
Aella Science Dataset Explorer 部署教程笔记
笔记·python·全文检索
爱笑的眼睛116 小时前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
BoBoZz196 小时前
ExtractSelection 选择和提取数据集中的特定点,以及如何反转该选择
python·vtk·图形渲染·图形处理
liwulin05066 小时前
【PYTHON-YOLOV8N】如何自定义数据集
开发语言·python·yolo
木头左7 小时前
LSTM量化交易策略中时间序列预测的关键输入参数分析与Python实现
人工智能·python·lstm
电子硬件笔记7 小时前
Python语言编程导论第七章 数据结构
开发语言·数据结构·python
HyperAI超神经8 小时前
【vLLM 学习】Prithvi Geospatial Mae
人工智能·python·深度学习·学习·大语言模型·gpu·vllm
逻极8 小时前
Python MySQL防SQL注入实战:从字符串拼接的坑到参数化查询的救赎
python·mysql·安全·sql注入
赫凯8 小时前
【强化学习】第一章 强化学习初探
人工智能·python·强化学习