回归与聚类——模型保存与加载(五)

sklearn模型的保存和加载API

  • from sklearn.externals import joblib
  • 保存:joblib.dump(rf,'test.pkl')
  • 加载:estimator =joblib.load('test.pkl')

线性回归的模型保存加载案例

获取数据、划分数据集、标准化、预估器、保存模型、得出模型、模型评估

c 复制代码
//保存模型
joblib.dump(estimator,"my_ridge.pkl")

//加载模型
estimator = ljoblib.load("my_ridge.pkl")
相关推荐
Loving_enjoy1 天前
基于Hadoop的明星社交媒体影响力数据挖掘平台:设计与实现
大数据·hadoop·数据挖掘
云和数据.ChenGuang2 天前
机器学习之回归算法
人工智能·机器学习·回归
代码骑士2 天前
聚类(Clustering)基础知识2
机器学习·数据挖掘·聚类
大美B端工场-B端系统美颜师2 天前
静态图表 VS 动态可视化,哪种更适合数据故事讲述?
信息可视化·数据挖掘·数据分析
葡萄成熟时_2 天前
【第十三届“泰迪杯”数据挖掘挑战赛】【2025泰迪杯】【代码篇】A题解题全流程(持续更新)
人工智能·数据挖掘
fantasy_arch2 天前
深度学习--softmax回归
人工智能·深度学习·回归
mosquito_lover12 天前
Python数据分析与可视化实战
python·数据挖掘·数据分析
Dovis(誓平步青云)2 天前
深挖 DeepSeek 隐藏玩法·智能炼金术2.0版本
人工智能·深度学习·机器学习·数据挖掘·服务发现·智慧城市
大美B端工场-B端系统美颜师2 天前
定制化管理系统与通用管理系统,谁更胜一筹?
人工智能·信息可视化·数据挖掘·数据分析
西柚小萌新2 天前
【深度学习:进阶篇】--2.1.多分类与TensorFlow
分类·数据挖掘·tensorflow