回归与聚类——模型保存与加载(五)

sklearn模型的保存和加载API

  • from sklearn.externals import joblib
  • 保存:joblib.dump(rf,'test.pkl')
  • 加载:estimator =joblib.load('test.pkl')

线性回归的模型保存加载案例

获取数据、划分数据集、标准化、预估器、保存模型、得出模型、模型评估

c 复制代码
//保存模型
joblib.dump(estimator,"my_ridge.pkl")

//加载模型
estimator = ljoblib.load("my_ridge.pkl")
相关推荐
Katecat996631 小时前
【海滩垃圾检测与分类识别-基于改进YOLO13-seg-iRMB模型】
人工智能·数据挖掘
沃达德软件4 小时前
智能警务视频侦查系统
大数据·人工智能·数据挖掘·数据分析·实时音视频·视频编解码
Wuhan87827211m10 小时前
鬃毛形态识别与分类:基于YOLOv8的PST方法
yolo·分类·数据挖掘
黑客思维者10 小时前
机器学习014:监督学习【分类算法】(逻辑回归)-- 一个“是与非”的智慧分类器
人工智能·学习·机器学习·分类·回归·逻辑回归·监督学习
Hcoco_me12 小时前
机器学习核心概念与主流算法(通俗详细版)
人工智能·算法·机器学习·数据挖掘·聚类
黑客思维者12 小时前
机器学习016:监督学习【分类算法】(支持向量机)-- “分类大师”入门指南
人工智能·学习·机器学习·支持向量机·分类·回归·监督学习
机器学习之心1 天前
基于Stacking集成学习算法的数据回归预测(4种基学习器PLS、SVM、BP、RF,元学习器LSBoost)MATLAB代码
算法·回归·集成学习·stacking集成学习
Hcoco_me1 天前
LLM(Large Language Model)系统学习路线清单
人工智能·算法·自然语言处理·数据挖掘·聚类
梦帮科技1 天前
Scikit-learn特征工程实战:从数据清洗到提升模型20%准确率
人工智能·python·机器学习·数据挖掘·开源·极限编程
我不是小upper1 天前
从理论到代码:随机森林 + GBDT+LightGBM 融合建模解决回归问题
人工智能·深度学习·算法·随机森林·机器学习·回归