回归与聚类——模型保存与加载(五)

sklearn模型的保存和加载API

  • from sklearn.externals import joblib
  • 保存:joblib.dump(rf,'test.pkl')
  • 加载:estimator =joblib.load('test.pkl')

线性回归的模型保存加载案例

获取数据、划分数据集、标准化、预估器、保存模型、得出模型、模型评估

c 复制代码
//保存模型
joblib.dump(estimator,"my_ridge.pkl")

//加载模型
estimator = ljoblib.load("my_ridge.pkl")
相关推荐
陈辛chenxin1 小时前
【大数据技术07】分类和聚类算法
神经网络·决策树·分类·聚类·分类算法
XINVRY-FPGA9 小时前
XCVP1802-2MSILSVC4072 AMD Xilinx Versal Premium Adaptive SoC FPGA
人工智能·嵌入式硬件·fpga开发·数据挖掘·云计算·硬件工程·fpga
c***42101 天前
爬虫基础之爬取某基金网站+数据分析
爬虫·数据挖掘·数据分析
hacker7071 天前
openGauss 在K12教育场景的数据处理测评:CASE WHEN 实现高效分类
人工智能·分类·数据挖掘
图灵信徒2 天前
R语言第七章线性回归模型
数据挖掘·数据分析·r语言·线性回归
Lwcah2 天前
Python | LGBM+SHAP可解释性分析回归预测及可视化算法
python·算法·回归
rgb2gray2 天前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
大数据魔法师2 天前
分类与回归算法(六)- 集成学习(随机森林、梯度提升决策树、Stacking分类)相关理论
分类·回归·集成学习
大数据魔法师2 天前
分类与回归算法(五)- 决策树分类
决策树·分类·回归
happy egg2 天前
随机森林分类VS回归
随机森林·分类·回归