python自定义交叉熵损失,再和pytorch api对比

背景

我们知道,交叉熵本质上是两个概率分布之间差异的度量,公式如下

其中概率分布P是基准,我们知道H(P,Q)>=0,那么H(P,Q)越小,说明Q约接近P。

损失函数本质上也是为了度量模型和完美模型的差异,因此可以用交叉熵作为损失函数,公式如下

其中

的部分不过是考虑到每次都是输入一批样本,因此把每个样本的交叉熵求出来以后要再求个平均。

注意,我的代码没有考虑标签是soft embedding的情况,如果遇到标注Y是[[0.1,0.1,0.8],[0.1,0.8,0.1],[0.1,0.1,0.8]],那么你需要把代码再推广一下。

自定义交叉熵损失

python 复制代码
from typing import List
import math

def my_softmax(x:List[List[float]])->List[List[float]]:
    new_x:List[List[float]] = []
    for i in range(len(x)):
        sum:float = 0
        new_x_i = []
        for j in range(len(x[0])):
            sum += math.exp(x[i][j])
        for j in range(len(x[0])):
            new_x_i.append(math.exp(x[i][j])/sum)
        new_x.append(new_x_i)
    return new_x

def my_cross_entropy(x:List[List[float]],y:List[int])->float:
    res:float = 0
    x = my_softmax(x)
    for i in range(len(x)):
        res += -math.log(x[i][y[i]]) # 根号外面的1和底数e省去了
    res /= len(x) # mean
    return res

# 假设有一个简单的三分类问题,批量大小为2
# 预测输出(通常是模型的原始输出,没有经过softmax)
logits = [[1.5, 0.5, -0.5], [1.2, 0.2, 3.0]]
# 0 和 2 分别表示第一个和第三个类别是正确的
targets = [0, 2]
print(my_cross_entropy(logits,targets))

Pytorch交叉熵损失

python 复制代码
import torch
import torch.nn as nn

logits = torch.tensor([[1.5, 0.5, -0.5],
                       [1.2, 0.2, 3.0]])

targets = torch.tensor([0, 2])  

criterion = nn.CrossEntropyLoss()

loss = criterion(logits, targets)

print(loss.item())
相关推荐
亚亚的学习和分享1 小时前
python基础语法----条件语句
python
Zzz 小生2 小时前
LangChain Streaming-Overview:流式处理使用完全指南
人工智能·python·语言模型·langchain·github
yzx9910132 小时前
Python数据结构入门指南:从基础到实践
开发语言·数据结构·python
百锦再3 小时前
Jenkins 全面精通指南:从入门到脚本大师
运维·后端·python·servlet·django·flask·jenkins
FYKJ_20103 小时前
springboot大学校园论坛管理系统--附源码42669
java·javascript·spring boot·python·spark·django·php
Loo国昌3 小时前
【AI应用开发实战】 03_LangGraph运行时与状态图编排:从直接执行到图编排的演进之路
人工智能·后端·python·自然语言处理·prompt
ValhallaCoder3 小时前
hot100-堆
数据结构·python·算法·
小小小米粒3 小时前
函数式接口 + Lambda = 方法逻辑的 “插拔式解耦”
开发语言·python·算法
Dr.Kun5 小时前
【鲲码园PsychoPy】延迟折扣任务(DDT)
python·psychopy·心理学编程
coding者在努力5 小时前
LangChain简介,最直白的介绍
人工智能·python·语言模型·langchain