python自定义交叉熵损失,再和pytorch api对比

背景

我们知道,交叉熵本质上是两个概率分布之间差异的度量,公式如下

其中概率分布P是基准,我们知道H(P,Q)>=0,那么H(P,Q)越小,说明Q约接近P。

损失函数本质上也是为了度量模型和完美模型的差异,因此可以用交叉熵作为损失函数,公式如下

其中

的部分不过是考虑到每次都是输入一批样本,因此把每个样本的交叉熵求出来以后要再求个平均。

注意,我的代码没有考虑标签是soft embedding的情况,如果遇到标注Y是[[0.1,0.1,0.8],[0.1,0.8,0.1],[0.1,0.1,0.8]],那么你需要把代码再推广一下。

自定义交叉熵损失

python 复制代码
from typing import List
import math

def my_softmax(x:List[List[float]])->List[List[float]]:
    new_x:List[List[float]] = []
    for i in range(len(x)):
        sum:float = 0
        new_x_i = []
        for j in range(len(x[0])):
            sum += math.exp(x[i][j])
        for j in range(len(x[0])):
            new_x_i.append(math.exp(x[i][j])/sum)
        new_x.append(new_x_i)
    return new_x

def my_cross_entropy(x:List[List[float]],y:List[int])->float:
    res:float = 0
    x = my_softmax(x)
    for i in range(len(x)):
        res += -math.log(x[i][y[i]]) # 根号外面的1和底数e省去了
    res /= len(x) # mean
    return res

# 假设有一个简单的三分类问题,批量大小为2
# 预测输出(通常是模型的原始输出,没有经过softmax)
logits = [[1.5, 0.5, -0.5], [1.2, 0.2, 3.0]]
# 0 和 2 分别表示第一个和第三个类别是正确的
targets = [0, 2]
print(my_cross_entropy(logits,targets))

Pytorch交叉熵损失

python 复制代码
import torch
import torch.nn as nn

logits = torch.tensor([[1.5, 0.5, -0.5],
                       [1.2, 0.2, 3.0]])

targets = torch.tensor([0, 2])  

criterion = nn.CrossEntropyLoss()

loss = criterion(logits, targets)

print(loss.item())
相关推荐
郝学胜-神的一滴3 小时前
Python变量本质:从指针哲学到Vibe Coding优化
开发语言·c++·python·程序人生
AC赳赳老秦3 小时前
新能源AI趋势:DeepSeek分析光伏/风电数据,助力2026新能源运维升级
运维·人工智能·python·安全·架构·prometheus·deepseek
Learner__Q4 小时前
GPT模型入门教程:从原理到实现
python·gpt
夕除4 小时前
js--21
java·python·算法
癫狂的兔子4 小时前
【Python】【机器学习】逻辑回归
python·机器学习·逻辑回归
啊阿狸不会拉杆4 小时前
《计算机视觉:模型、学习和推理》第 2 章-概率概述
人工智能·python·学习·算法·机器学习·计算机视觉·ai
大黄说说4 小时前
Spring Boot 3 新特性详解与迁移指南:从 Java 17 到云原生最佳实践
开发语言·python
尘缘浮梦4 小时前
yield关键字
python
喵手4 小时前
Python爬虫实战:数据质量检测与治理 - 构建健壮的爬虫数据管道(附CSV导出 + SQLite持久化存储)!
爬虫·python·sqlite·爬虫实战·零基础python爬虫教学·数据质量检测与治理·爬虫数据管道