python自定义交叉熵损失,再和pytorch api对比

背景

我们知道,交叉熵本质上是两个概率分布之间差异的度量,公式如下

其中概率分布P是基准,我们知道H(P,Q)>=0,那么H(P,Q)越小,说明Q约接近P。

损失函数本质上也是为了度量模型和完美模型的差异,因此可以用交叉熵作为损失函数,公式如下

其中

的部分不过是考虑到每次都是输入一批样本,因此把每个样本的交叉熵求出来以后要再求个平均。

注意,我的代码没有考虑标签是soft embedding的情况,如果遇到标注Y是[[0.1,0.1,0.8],[0.1,0.8,0.1],[0.1,0.1,0.8]],那么你需要把代码再推广一下。

自定义交叉熵损失

python 复制代码
from typing import List
import math

def my_softmax(x:List[List[float]])->List[List[float]]:
    new_x:List[List[float]] = []
    for i in range(len(x)):
        sum:float = 0
        new_x_i = []
        for j in range(len(x[0])):
            sum += math.exp(x[i][j])
        for j in range(len(x[0])):
            new_x_i.append(math.exp(x[i][j])/sum)
        new_x.append(new_x_i)
    return new_x

def my_cross_entropy(x:List[List[float]],y:List[int])->float:
    res:float = 0
    x = my_softmax(x)
    for i in range(len(x)):
        res += -math.log(x[i][y[i]]) # 根号外面的1和底数e省去了
    res /= len(x) # mean
    return res

# 假设有一个简单的三分类问题,批量大小为2
# 预测输出(通常是模型的原始输出,没有经过softmax)
logits = [[1.5, 0.5, -0.5], [1.2, 0.2, 3.0]]
# 0 和 2 分别表示第一个和第三个类别是正确的
targets = [0, 2]
print(my_cross_entropy(logits,targets))

Pytorch交叉熵损失

python 复制代码
import torch
import torch.nn as nn

logits = torch.tensor([[1.5, 0.5, -0.5],
                       [1.2, 0.2, 3.0]])

targets = torch.tensor([0, 2])  

criterion = nn.CrossEntropyLoss()

loss = criterion(logits, targets)

print(loss.item())
相关推荐
小小逐月者10 分钟前
SQLModel 开发笔记:Python SQL 数据库操作的「简化神器」
数据库·笔记·python
曲幽11 分钟前
FastAPI生命周期管理实战:从启动到关闭,如何优雅地管好你的“资源家当”
redis·python·fastapi·web·shutdown·startup·lifespan
gr178512 分钟前
通过dify文件上传能力,解决较大文本与LLM实时交互问题
python·llm·aigc·dify
学习的周周啊15 分钟前
ClawdBot(openclaw) + Cloudflare Tunnel + Zero-Trust 零基础保姆教程
网络·人工智能·python·clawdbot
电饭叔20 分钟前
DataFrame和 Series 索引
android·python
穿过锁扣的风22 分钟前
决策树:从入门到实战,解锁 AI 分类预测的核心利器
数据结构·python·决策树
爱学习的阿磊23 分钟前
用Python实现自动化的Web测试(Selenium)
jvm·数据库·python
啊阿狸不会拉杆23 分钟前
《机器学习导论》第 1 章 - 引言
人工智能·python·算法·机器学习·ai·numpy·matplotlib
爱喝可乐的老王30 分钟前
PyTorch搭建神经网络
pytorch·深度学习·神经网络
阿钱真强道33 分钟前
11 JetLinks MQTT 直连设备功能调用完整流程与 Python 实现
服务器·开发语言·网络·python·物联网·网络协议