python自定义交叉熵损失,再和pytorch api对比

背景

我们知道,交叉熵本质上是两个概率分布之间差异的度量,公式如下

其中概率分布P是基准,我们知道H(P,Q)>=0,那么H(P,Q)越小,说明Q约接近P。

损失函数本质上也是为了度量模型和完美模型的差异,因此可以用交叉熵作为损失函数,公式如下

其中

的部分不过是考虑到每次都是输入一批样本,因此把每个样本的交叉熵求出来以后要再求个平均。

注意,我的代码没有考虑标签是soft embedding的情况,如果遇到标注Y是[[0.1,0.1,0.8],[0.1,0.8,0.1],[0.1,0.1,0.8]],那么你需要把代码再推广一下。

自定义交叉熵损失

python 复制代码
from typing import List
import math

def my_softmax(x:List[List[float]])->List[List[float]]:
    new_x:List[List[float]] = []
    for i in range(len(x)):
        sum:float = 0
        new_x_i = []
        for j in range(len(x[0])):
            sum += math.exp(x[i][j])
        for j in range(len(x[0])):
            new_x_i.append(math.exp(x[i][j])/sum)
        new_x.append(new_x_i)
    return new_x

def my_cross_entropy(x:List[List[float]],y:List[int])->float:
    res:float = 0
    x = my_softmax(x)
    for i in range(len(x)):
        res += -math.log(x[i][y[i]]) # 根号外面的1和底数e省去了
    res /= len(x) # mean
    return res

# 假设有一个简单的三分类问题,批量大小为2
# 预测输出(通常是模型的原始输出,没有经过softmax)
logits = [[1.5, 0.5, -0.5], [1.2, 0.2, 3.0]]
# 0 和 2 分别表示第一个和第三个类别是正确的
targets = [0, 2]
print(my_cross_entropy(logits,targets))

Pytorch交叉熵损失

python 复制代码
import torch
import torch.nn as nn

logits = torch.tensor([[1.5, 0.5, -0.5],
                       [1.2, 0.2, 3.0]])

targets = torch.tensor([0, 2])  

criterion = nn.CrossEntropyLoss()

loss = criterion(logits, targets)

print(loss.item())
相关推荐
喵手5 分钟前
Python爬虫零基础入门【第九章:实战项目教学·第5节】SQLite 入库实战:唯一键 + Upsert(幂等写入)!
爬虫·python·sqlite·爬虫实战·python爬虫工程化实战·零基础python爬虫教学·sqlite入库实战
Lun3866buzha9 分钟前
基于YOLOv26的昆虫检测与识别系统及Pytorch实现
人工智能·pytorch·yolo
DN20209 分钟前
好用的机器人销售供应商
python
爬山算法10 分钟前
Hibernate(64)如何在Java EE中使用Hibernate?
python·java-ee·hibernate
lixin55655613 分钟前
基于迁移学习的图像分类增强器
java·人工智能·pytorch·python·深度学习·语言模型
翱翔的苍鹰1 小时前
多Agent智能体架构设计思路
人工智能·pytorch·python
小毅&Nora1 小时前
【后端】【Python】① Windows系统下Python环境变量设置指南
python·pip
Rabbit_QL8 小时前
【水印添加工具】从零设计一个工程级 Python 图片水印工具:WaterMask 架构与实现
开发语言·python
曲幽10 小时前
FastAPI多进程部署:定时任务重复执行?手把手教你用锁搞定
redis·python·fastapi·web·lock·works
森屿~~10 小时前
AI 手势识别系统:踩坑与实现全记录 (PyTorch + MediaPipe)
人工智能·pytorch·python