python自定义交叉熵损失,再和pytorch api对比

背景

我们知道,交叉熵本质上是两个概率分布之间差异的度量,公式如下

其中概率分布P是基准,我们知道H(P,Q)>=0,那么H(P,Q)越小,说明Q约接近P。

损失函数本质上也是为了度量模型和完美模型的差异,因此可以用交叉熵作为损失函数,公式如下

其中

的部分不过是考虑到每次都是输入一批样本,因此把每个样本的交叉熵求出来以后要再求个平均。

注意,我的代码没有考虑标签是soft embedding的情况,如果遇到标注Y是[[0.1,0.1,0.8],[0.1,0.8,0.1],[0.1,0.1,0.8]],那么你需要把代码再推广一下。

自定义交叉熵损失

python 复制代码
from typing import List
import math

def my_softmax(x:List[List[float]])->List[List[float]]:
    new_x:List[List[float]] = []
    for i in range(len(x)):
        sum:float = 0
        new_x_i = []
        for j in range(len(x[0])):
            sum += math.exp(x[i][j])
        for j in range(len(x[0])):
            new_x_i.append(math.exp(x[i][j])/sum)
        new_x.append(new_x_i)
    return new_x

def my_cross_entropy(x:List[List[float]],y:List[int])->float:
    res:float = 0
    x = my_softmax(x)
    for i in range(len(x)):
        res += -math.log(x[i][y[i]]) # 根号外面的1和底数e省去了
    res /= len(x) # mean
    return res

# 假设有一个简单的三分类问题,批量大小为2
# 预测输出(通常是模型的原始输出,没有经过softmax)
logits = [[1.5, 0.5, -0.5], [1.2, 0.2, 3.0]]
# 0 和 2 分别表示第一个和第三个类别是正确的
targets = [0, 2]
print(my_cross_entropy(logits,targets))

Pytorch交叉熵损失

python 复制代码
import torch
import torch.nn as nn

logits = torch.tensor([[1.5, 0.5, -0.5],
                       [1.2, 0.2, 3.0]])

targets = torch.tensor([0, 2])  

criterion = nn.CrossEntropyLoss()

loss = criterion(logits, targets)

print(loss.item())
相关推荐
Jonathan Star33 分钟前
Ant Design (antd) Form 组件中必填项的星号(*)从标签左侧移到右侧
人工智能·python·tensorflow
努力努力再努力wz1 小时前
【Linux网络系列】:TCP 的秩序与策略:揭秘传输层如何从不可靠的网络中构建绝对可靠的通信信道
java·linux·开发语言·数据结构·c++·python·算法
deep_drink1 小时前
【论文精读(三)】PointMLP:大道至简,无需卷积与注意力的纯MLP点云网络 (ICLR 2022)
人工智能·pytorch·python·深度学习·3d·point cloud
njsgcs2 小时前
langchain+vlm示例
windows·python·langchain
勇气要爆发2 小时前
LangGraph 实战:10分钟打造带“人工审批”的智能体流水线 (Python + LangChain)
开发语言·python·langchain
jz_ddk2 小时前
[实战] 从冲击响应函数计算 FIR 系数
python·fpga开发·信号处理·fir·根升余弦·信号成形
醒醒该学习了!2 小时前
如何将json文件转成csv文件(python代码实操)
服务器·python·json
忘忧记3 小时前
pythonQT版本的图书管理系统
python·fastapi
一只理智恩3 小时前
AI 实战应用:从“搜索式问答“到“理解式助教“
人工智能·python·语言模型·golang
Katecat996633 小时前
输液泵设备检测与识别基于改进YOLO11模型的实现详解_ETB
python