目标检测(二阶段)领域,常见词汇

1、Backbone(主干网络)
  • 定义 : Backbone是目标检测模型的基础部分,通常是一个预训练的卷积神经网络(如ResNet、VGG、MobileNet等),负责从输入图像中提取多层特征图。这些特征图包含了不同尺度和抽象级别的信息,是后续步骤进行目标定位和识别的基础。
  • 作用: 提供丰富的特征表示,是整个模型的基础。
2、Neck(颈部网络)
  • 定义 : Neck 通常位于 Backbone 和检测头(Head)之间,用于进一步处理或增强特征图。它可以帮助模型更好地理解图像内容。Neck可以包含多种模块,如特征金字塔网络(FPN)、SPP(Spatial Pyramid Pooling)、ASPP(Atrous Spatial Pyramid Pooling)等,用于优化特征表示。
  • 作用 : 增强特征的表达能力,提高检测性能。
    • 2.1 FPN(特征金字塔网络)
      • 定义: FPN是一种特殊的Neck结构,它通过自顶向下和自底向上的路径聚合不同尺度的特征图,创建一个丰富的多尺度特征金字塔。这样做的目的是让每个层级的特征都能同时具备高语义信息和精确的空间位置信息,从而提高小物体的检测能力。
      • 作用: 处理多尺度目标,提高对小目标和大目标的检测能力。
3、RPN(Region Proposal Network)
  • 定义 : RPN是两阶段目标检测器(如Faster R-CNN)的一部分,位于Neck之后或直接与某些Backbone层相连。它的作用是从Neck或Backbone产生的特征图中生成一系列可能包含对象的区域提议(Region Proposals),这些提议随后被送入Head进行分类和边框回归。
  • 作用: 减少后续处理的搜索空间,提高检测效率。
4、Head(检测头)
  • 定义 : Head位于Neck或特征处理模块之后,负责最终的分类和定位任务。它通常包括两个部分:一个用于分类,判断提议框内是否包含对象以及是哪种对象;另一个用于回归,精调提议框的位置使其更准确地包围目标。Head的设计会根据检测器是一阶段还是两阶段有所不同。
  • 作用: 完成最终的分类和边界框预测。
5、Loss(损失函数)
  • 定义 : Loss是衡量模型预测结果与真实标签之间差异的一个量化指标,用于指导模型在训练过程中的参数更新。在目标检测中,常用的损失函数组合包括分类损失(如交叉熵损失)和定位损失(如平滑L1损失),确保模型既能够正确分类也能精确定位目标。
  • 作用: 指导模型学习,确保预测结果尽可能接近真实值。

在两阶段目标检测模型(如 Faster R-CNN)中,Backbone 提取特征,RPN 生成候选区域,然后这些区域通过 RoI Pooling 传递给 FPN(作为 Neck 的一种),FPN 增强特征后传递给 Head 进行分类和边界框回归。整个过程中,Loss 函数用来衡量预测结果与真实值之间的差异,并指导模型的训练。

相关推荐
打码人的日常分享15 小时前
智慧城市一网统管建设方案,新型城市整体建设方案(PPT)
大数据·运维·服务器·人工智能·信息可视化·智慧城市
Sui_Network15 小时前
21shares 在纳斯达克推出 2 倍 SUI 杠杆 ETF(TXXS)
大数据·人工智能·游戏·金融·区块链
龙亘川15 小时前
开箱即用的智慧城市一网统管 AI 平台——功能模块详解(3)
大数据·人工智能·智慧城市·智慧城市一网统管 ai 平台
Michaelwubo15 小时前
tritonserver 推理框架
人工智能
稳石氢能15 小时前
稳石氢能董事长贾力出席2025高工氢电年会,呼吁制氢产业生态建设获广泛赞同。
人工智能
2301_8002561116 小时前
8.2 空间查询基本组件 核心知识点总结
数据库·人工智能·算法
Aspect of twilight16 小时前
PyTorch DDP分布式训练Pytorch代码讲解
人工智能·pytorch·python
用户51914958484516 小时前
滥用ESC10:通过注册表配置不当实现权限提升的ADCS攻击分析
人工智能·aigc
黎茗Dawn16 小时前
DDPM-KL 散度与 L2 损失
人工智能·算法·机器学习
玖日大大16 小时前
融合浪潮:从 “国产替代” 到 “范式创新” 的必然跃迁
人工智能