用卷积网络对城市住区进行分类

这将是解释我的人工智能硕士最终项目的几篇文章中的第一篇,我想在其中详细解释从项目的想法到结论,我将在其中展示给定解决方案的所有代码。

总体思路

城市扩张地图集

https://www.lincolninst.edu/es/publications/books/atlas-urban-expansion

项目需要大量人力来获取数据,以评估全球 200 个城市的城市结构质量。其中一项任务是对城市地块进行分类。

阶段目标是:创建一个卷积网络,负责根据这些地块的类型自动对其进行分类。 最终目标:尝试利用人工智能的进步来解决项目中这类特定部分需求,并看看是否有可能创建这种类型的解决方案。

数据准备

它是使用从 Cartociudad + Cadastre 获取的图进行的,并在 gvSIG Desktop 中手动标记,以便基于 PNOA 图像训练网络。

这些图的剪切是在 PNOA 上进行的,并分组在文件夹中。这也与 gvSIG Desktop 上的脚本有关。

数据训练

使用Python + Keras 创建卷积网络。

复制代码
model = tf.keras.models.Sequential([
      tf.keras.layers.Conv2D(200, (3,3), activation='relu', input_shape=(image_size, image_size, 3)),
      tf.keras.layers.MaxPooling2D(2, 2),

      tf.keras.layers.Conv2D(128, (3,3), activation='relu'),#, input_shape=(image_size, image_size, 3)),
      tf.keras.layers.MaxPooling2D(2, 2),

      tf.keras.layers.Conv2D(64, (3,3), activation='relu'), # input_shape=(image_size, image_size, 3)),
      tf.keras.layers.MaxPooling2D(2, 2),
      
      tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
      tf.keras.layers.MaxPooling2D(2,2),
      
      tf.keras.layers.Flatten(),
      tf.keras.layers.Dropout(0.5),

      tf.keras.layers.Dense(200, activation='relu'),
      tf.keras.layers.Dense(128, activation='relu'),
      tf.keras.layers.Dense(64, activation='relu'),
      tf.keras.layers.Dense(4, activation='softmax')
  ])

Model: "sequential"
Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 222, 222, 200) 5600
max_pooling2d (MaxPooling2D) (None, 111, 111, 200) 0
conv2d_1 (Conv2D) (None, 109, 109, 128) 230528
max_pooling2d_1 (MaxPooling2 (None, 54, 54, 128) 0
conv2d_2 (Conv2D) (None, 52, 52, 64) 73792
max_pooling2d_2 (MaxPooling2 (None, 26, 26, 64) 0
conv2d_3 (Conv2D) (None, 24, 24, 32) 18464
max_pooling2d_3 (MaxPooling2 (None, 12, 12, 32) 0
____________________________________________
flatten (Flatten) (None, 4608) 0
dropout (Dropout) (None, 4608) 0
____________________________________________
dense (Dense) (None, 200) 921800
dense_1 (Dense) (None, 128) 25728
dense_2 (Dense) (None, 64) 8256
dense_3 (Dense) (None, 4) 260
============================================
Total params: 1,284,428
Trainable params: 1,284,428
Non-trainable params: 0
相关推荐
acstdm2 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl2 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~3 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
视觉语言导航5 小时前
RAL-2025 | 清华大学数字孪生驱动的机器人视觉导航!VR-Robo:面向视觉机器人导航与运动的现实-模拟-现实框架
人工智能·深度学习·机器人·具身智能
羊小猪~~6 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
李师兄说大模型6 小时前
KDD 2025 | 地理定位中的群体智能:一个多智能体大型视觉语言模型协同框架
人工智能·深度学习·机器学习·语言模型·自然语言处理·大模型·deepseek
锅挤7 小时前
深度学习5(深层神经网络 + 参数和超参数)
人工智能·深度学习·神经网络
网安INF7 小时前
深层神经网络:原理与传播机制详解
人工智能·深度学习·神经网络·机器学习
喜欢吃豆7 小时前
目前最火的agent方向-A2A快速实战构建(二): AutoGen模型集成指南:从OpenAI到本地部署的全场景LLM解决方案
后端·python·深度学习·flask·大模型
喜欢吃豆8 小时前
快速手搓一个MCP服务指南(九): FastMCP 服务器组合技术:构建模块化AI应用的终极方案
服务器·人工智能·python·深度学习·大模型·github·fastmcp