用卷积网络对城市住区进行分类

这将是解释我的人工智能硕士最终项目的几篇文章中的第一篇,我想在其中详细解释从项目的想法到结论,我将在其中展示给定解决方案的所有代码。

总体思路

城市扩张地图集

https://www.lincolninst.edu/es/publications/books/atlas-urban-expansion

项目需要大量人力来获取数据,以评估全球 200 个城市的城市结构质量。其中一项任务是对城市地块进行分类。

阶段目标是:创建一个卷积网络,负责根据这些地块的类型自动对其进行分类。 最终目标:尝试利用人工智能的进步来解决项目中这类特定部分需求,并看看是否有可能创建这种类型的解决方案。

数据准备

它是使用从 Cartociudad + Cadastre 获取的图进行的,并在 gvSIG Desktop 中手动标记,以便基于 PNOA 图像训练网络。

这些图的剪切是在 PNOA 上进行的,并分组在文件夹中。这也与 gvSIG Desktop 上的脚本有关。

数据训练

使用Python + Keras 创建卷积网络。

复制代码
model = tf.keras.models.Sequential([
      tf.keras.layers.Conv2D(200, (3,3), activation='relu', input_shape=(image_size, image_size, 3)),
      tf.keras.layers.MaxPooling2D(2, 2),

      tf.keras.layers.Conv2D(128, (3,3), activation='relu'),#, input_shape=(image_size, image_size, 3)),
      tf.keras.layers.MaxPooling2D(2, 2),

      tf.keras.layers.Conv2D(64, (3,3), activation='relu'), # input_shape=(image_size, image_size, 3)),
      tf.keras.layers.MaxPooling2D(2, 2),
      
      tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
      tf.keras.layers.MaxPooling2D(2,2),
      
      tf.keras.layers.Flatten(),
      tf.keras.layers.Dropout(0.5),

      tf.keras.layers.Dense(200, activation='relu'),
      tf.keras.layers.Dense(128, activation='relu'),
      tf.keras.layers.Dense(64, activation='relu'),
      tf.keras.layers.Dense(4, activation='softmax')
  ])

Model: "sequential"
Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 222, 222, 200) 5600
max_pooling2d (MaxPooling2D) (None, 111, 111, 200) 0
conv2d_1 (Conv2D) (None, 109, 109, 128) 230528
max_pooling2d_1 (MaxPooling2 (None, 54, 54, 128) 0
conv2d_2 (Conv2D) (None, 52, 52, 64) 73792
max_pooling2d_2 (MaxPooling2 (None, 26, 26, 64) 0
conv2d_3 (Conv2D) (None, 24, 24, 32) 18464
max_pooling2d_3 (MaxPooling2 (None, 12, 12, 32) 0
____________________________________________
flatten (Flatten) (None, 4608) 0
dropout (Dropout) (None, 4608) 0
____________________________________________
dense (Dense) (None, 200) 921800
dense_1 (Dense) (None, 128) 25728
dense_2 (Dense) (None, 64) 8256
dense_3 (Dense) (None, 4) 260
============================================
Total params: 1,284,428
Trainable params: 1,284,428
Non-trainable params: 0
相关推荐
Vizio<2 小时前
基于CNN的猫狗识别(自定义CNN模型)
人工智能·笔记·深度学习·神经网络·cnn
山海不说话2 小时前
深度学习(第3章——亚像素卷积和可形变卷积)
图像处理·人工智能·pytorch·深度学习·目标检测·计算机视觉·超分辨率重建
-一杯为品-3 小时前
【深度学习】#12 计算机视觉
人工智能·深度学习·计算机视觉
蹦蹦跳跳真可爱5893 小时前
Python----神经网络(《Searching for MobileNetV3》论文概括和MobileNetV3网络)
人工智能·python·深度学习·神经网络
終不似少年遊*4 小时前
【从基础到模型网络】深度学习-语义分割-基础
网络·人工智能·深度学习·语义分割·卷积·上采样
zeroporn4 小时前
分别用 语言模型雏形N-Gram 和 文本表示BoW词袋 来实现文本情绪分类
人工智能·语言模型·分类·大模型·n-gram·词袋
想要成为计算机高手5 小时前
半成品的开源双系统VLA模型,OpenHelix-发表于2025.5.6
人工智能·深度学习·计算机视觉·自然语言处理·机器人·开源·vla
qq_368019666 小时前
人工智能、机器学习、深度学习定义与联系
人工智能·深度学习·机器学习
有Li6 小时前
联合建模组织学和分子标记用于癌症分类|文献速递-深度学习医疗AI最新文献
人工智能·深度学习·分类
乌旭6 小时前
开源GPU架构RISC-V VCIX的深度学习潜力测试:从RTL仿真到MNIST实战
人工智能·深度学习·stable diffusion·架构·aigc·midjourney·risc-v