用卷积网络对城市住区进行分类

这将是解释我的人工智能硕士最终项目的几篇文章中的第一篇,我想在其中详细解释从项目的想法到结论,我将在其中展示给定解决方案的所有代码。

总体思路

城市扩张地图集

https://www.lincolninst.edu/es/publications/books/atlas-urban-expansion

项目需要大量人力来获取数据,以评估全球 200 个城市的城市结构质量。其中一项任务是对城市地块进行分类。

阶段目标是:创建一个卷积网络,负责根据这些地块的类型自动对其进行分类。 最终目标:尝试利用人工智能的进步来解决项目中这类特定部分需求,并看看是否有可能创建这种类型的解决方案。

数据准备

它是使用从 Cartociudad + Cadastre 获取的图进行的,并在 gvSIG Desktop 中手动标记,以便基于 PNOA 图像训练网络。

这些图的剪切是在 PNOA 上进行的,并分组在文件夹中。这也与 gvSIG Desktop 上的脚本有关。

数据训练

使用Python + Keras 创建卷积网络。

复制代码
model = tf.keras.models.Sequential([
      tf.keras.layers.Conv2D(200, (3,3), activation='relu', input_shape=(image_size, image_size, 3)),
      tf.keras.layers.MaxPooling2D(2, 2),

      tf.keras.layers.Conv2D(128, (3,3), activation='relu'),#, input_shape=(image_size, image_size, 3)),
      tf.keras.layers.MaxPooling2D(2, 2),

      tf.keras.layers.Conv2D(64, (3,3), activation='relu'), # input_shape=(image_size, image_size, 3)),
      tf.keras.layers.MaxPooling2D(2, 2),
      
      tf.keras.layers.Conv2D(32, (3,3), activation='relu'),
      tf.keras.layers.MaxPooling2D(2,2),
      
      tf.keras.layers.Flatten(),
      tf.keras.layers.Dropout(0.5),

      tf.keras.layers.Dense(200, activation='relu'),
      tf.keras.layers.Dense(128, activation='relu'),
      tf.keras.layers.Dense(64, activation='relu'),
      tf.keras.layers.Dense(4, activation='softmax')
  ])

Model: "sequential"
Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 222, 222, 200) 5600
max_pooling2d (MaxPooling2D) (None, 111, 111, 200) 0
conv2d_1 (Conv2D) (None, 109, 109, 128) 230528
max_pooling2d_1 (MaxPooling2 (None, 54, 54, 128) 0
conv2d_2 (Conv2D) (None, 52, 52, 64) 73792
max_pooling2d_2 (MaxPooling2 (None, 26, 26, 64) 0
conv2d_3 (Conv2D) (None, 24, 24, 32) 18464
max_pooling2d_3 (MaxPooling2 (None, 12, 12, 32) 0
____________________________________________
flatten (Flatten) (None, 4608) 0
dropout (Dropout) (None, 4608) 0
____________________________________________
dense (Dense) (None, 200) 921800
dense_1 (Dense) (None, 128) 25728
dense_2 (Dense) (None, 64) 8256
dense_3 (Dense) (None, 4) 260
============================================
Total params: 1,284,428
Trainable params: 1,284,428
Non-trainable params: 0
相关推荐
会笑的小熊6 小时前
论文阅读笔记——自注意力机制
深度学习·计算机视觉·自然语言处理
GIS开发特训营6 小时前
常见二三维GIS数据分类及处理流程图
学习·流程图·gis·gis开发·webgis
北数云7 小时前
北数云|利用Limix模型对tabular-benchmark数据集实现分类和回归任务
分类·数据挖掘·回归·gpu算力
2501_938791229 小时前
逻辑回归与KNN在低维与高维数据上的分类性能差异研究
算法·分类·逻辑回归
南方的狮子先生9 小时前
【深度学习】60 分钟 PyTorch 极速入门:从 Tensor 到 CIFAR-10 分类
人工智能·pytorch·python·深度学习·算法·分类·1024程序员节
JJJJ_iii9 小时前
【机器学习10】项目生命周期、偏斜类别评估、决策树
人工智能·python·深度学习·算法·决策树·机器学习
金融小师妹10 小时前
OpenAI拟借AI估值重构浪潮冲击1.1万亿美元IPO——基于市场情绪因子与估值量化模型的深度分析
大数据·人工智能·深度学习·1024程序员节
ShiMetaPi13 小时前
ShimetaPi丨事件相机新版SDK发布:支持Python调用,可降低使用门槛
深度学习·计算机视觉·事件相机·evs
南方的狮子先生14 小时前
【深度学习】卷积神经网络(CNN)入门:看图识物不再难!
人工智能·笔记·深度学习·神经网络·机器学习·cnn·1024程序员节
howard200515 小时前
神经网络初探
深度学习·神经网络·keras