前言
仅记录学习过程,有问题欢迎讨论
TF*IDF:
优势:
-
可解释性好
可以清晰地看到关键词
即使预测结果出错,也很容易找到原因
-
计算速度快
分词本身占耗时最多,其余为简单统计计算
-
对标注数据依赖小
可以使用无标注语料完成一部分工作
-
可以与很多算法组合使用
可以看做是词权重
劣势:
1.受分词效果影响大
2.词与词之间没有语义相似度
3.没有语序信息(词袋模型)
4.能力范围有限,无法完成复杂任务,如机器翻译和实体挖掘等
5.样本不均衡会对结果有很大影响
6.类内样本间分布不被考虑
代码
Demo1:手动实现TFIDF
java
"""
实现一个 TFIDF
"""
import jieba
import math
import os
import json
from collections import defaultdict
def build_tf_idf_dict(corpus):
tf_dict = defaultdict(dict) # key:文档序号,value:dict,文档中每个词出现的频率
idf_dict = defaultdict(set) # key:词, value:set,文档序号,最终用于计算每个词在多少篇文档中出现过
for text_index, text_words in enumerate(corpus):
for word in text_words:
if word not in tf_dict[text_index]:
tf_dict[text_index][word] = 0
tf_dict[text_index][word] += 1
idf_dict[word].add(text_index)
idf_dict = dict([(key, len(value)) for key, value in idf_dict.items()])
return tf_dict, idf_dict
# 根据tf值和idf值计算tfidf
def calculate_tf_idf(tf_dict, idf_dict):
tf_idf_dict = defaultdict(dict)
for text_index, word_tf_count_dict in tf_dict.items():
for word, tf_count in word_tf_count_dict.items():
tf = tf_count / sum(word_tf_count_dict.values())
# tf-idf = tf * log(D/(idf + 1))
tf_idf_dict[text_index][word] = tf * math.log(len(tf_dict) / (idf_dict[word] + 1))
return tf_idf_dict
# 计算样本的 tfidf
def calculate_tfidf(corpus):
corpus = [jieba.cut(text) for text in corpus]
tf_dict, idf_dict = build_tf_idf_dict(corpus)
tf_idf_dict = calculate_tf_idf(tf_dict, idf_dict)
return tf_idf_dict
# 取出前k个 tfidf最大的数据
def tf_idf_topk(tfidf_dict, paths=[], top=10, print_word=True):
topk_dict = {}
for text_index, text_tfidf_dict in tfidf_dict.items():
# idf 逆序
word_list = sorted(text_tfidf_dict.items(), reverse=True, key=lambda x: x[1])
# 去排序后的前top个
topk_dict[text_index] = word_list[:top]
if print_word:
print(text_index, paths[text_index])
for i in range(top):
print(word_list[i])
print("----------")
return topk_dict
def main():
dir_path = r"week4/category_corpus/"
corpus = []
paths = []
for path in os.listdir(dir_path):
path = os.path.join(dir_path, path)
if path.endswith("txt"):
corpus.append(open(path, encoding="utf8").read())
paths.append(os.path.basename(path))
tf_idf_dict = calculate_tfidf(corpus)
tf_idf_topk(tf_idf_dict, paths)
if __name__ == "__main__":
main()
Demo2:利用 tfidf 实现简单搜索引擎功能
python
"""
利用 tfidf 实现简单搜索引擎功能
"""
import jieba
import math
import os
import json
from collections import defaultdict
# 加载文档数据(可以想象成网页数据),计算每个网页的tfidf字典
from day0429_1 import calculate_tfidf
def load_data(path):
# path = "/week4/news.json"
corpus = []
with open(path, encoding="utf8") as f:
documents = json.loads(f.read())
for document in documents:
corpus.append(document['title'] + "\n" + document["content"])
tf_idf_dict = calculate_tfidf(corpus)
return tf_idf_dict, corpus
def search_engine(query_str, tf_idf_dict, corpus, top=3):
query_words = jieba.lcut(query_str)
res = []
for doc_id, tf_idf in tf_idf_dict.items():
score = 0
for word in query_words:
# 搜到关键词了 score++
score += tf_idf.get(word, 0)
res.append([doc_id, score])
res = sorted(res, reverse=True, key=lambda x: x[1])
for i in range(top):
doc_id = res[i][0]
print(corpus[doc_id])
print("--------------")
return res
if __name__ == "__main__":
path = "C:\\Users\\Administrator\\Desktop\\LearnPython\\week4\\news.json"
tf_idf_dict, corpus = load_data(path)
while True:
query = input("请输入您要搜索的内容:")
search_engine(query, tf_idf_dict, corpus)
Demo3 :基于tfidf实现简单文本摘要
python
import jieba
import math
import os
import random
import re
import json
from collections import defaultdict
from day0429_1 import calculate_tfidf
"""
基于tfidf实现简单文本摘要
"""
# 加载文档数据(可以想象成网页数据),计算每个网页的tfidf字典
def load_data(file_path):
corpus = []
with open(file_path, encoding="utf8") as f:
documents = json.loads(f.read())
for document in documents:
assert "\n" not in document["title"]
assert "\n" not in document["content"]
corpus.append(document["title"] + "\n" + document["content"])
tf_idf_dict = calculate_tfidf(corpus)
return tf_idf_dict, corpus
# 计算每一篇文章的摘要
# 输入该文章的tf_idf词典,和文章内容
# top为人为定义的选取的句子数量
# 过滤掉一些正文太短的文章,因为正文太短在做摘要意义不大
def generate_document_abstract(document_tf_idf, document, top=3):
sentences = re.split("?|!|。", document)
if len(sentences) < 5:
return None
res = []
for index, sentence in enumerate(sentences):
sentence_score = 0
words = jieba.lcut(sentence)
for word in words:
sentence_score += document_tf_idf.get(word, 0)
# 记录下每句话的分数和下标
res.append([sentence_score, index])
res = sorted(res, reverse=True, key=lambda x: x[0])
# 权重最高的可能依次是第10,第6,第3句,将他们调整为出现顺序比较合理,即3,6,10
important_sentence_indexs = sorted([x[1] for x in res[:top]])
return "。".join([sentences[index] for index in important_sentence_indexs])
# 生成摘要
def generate_abstract(tf_idf_dict, corpus):
res = []
for index, document_tf_idf in tf_idf_dict.items():
title, content = corpus[index].split("\n")
abstract = generate_document_abstract(document_tf_idf, content)
if abstract is None:
continue
corpus[index] = "\n" + abstract
res.append({"标题": title, "正文": content, "摘要": abstract})
return res
if __name__ == "__main__":
path = "C:\\Users\\Administrator\\Desktop\\LearnPython\\week4\\news.json"
tf_idf_dict, corpus = load_data(path)
res = generate_abstract(tf_idf_dict, corpus)
writer = open("abstract.json", "w", encoding="utf8")
writer.write(json.dumps(res, ensure_ascii=False, indent=2))
writer.close()