应用监控(Prometheus + Grafana)

可用于应用监控的系统有很多,有的需要埋点(切面)、有的需要配置Agent(字节码增强)。现在使用另外一个监控系统 ------ Grafana。

Grafana 监控面板

这套监控主要用到了 SpringBoot Actuator + Prometheus + Grafana 三个模块组合的起来使用的监控。非常轻量好扩展使用。

  1. Actuator - 数据上报、Prometheus - 数据采集、Grafana - 数据展示

  2. 本章节的内容主要为代码中的配置和监控的配置。

环境配置

本节所需的监控配置,已经放到了 chatgpt-data 的 dev-ops 包下了。你只需要确保本地或者云服务器已经安装了Docker,那么就可以执行安装了。

1. Grafana.ini

这一部分是小傅哥通过第一次默认安装后,再通过 docker 脚本 docker container cp grafana:/etc/grafana/ ./docs/dev-ops/ 从容器中拷贝下来的配置。因为我们需要做一些默认的配置处理。

端口修改

The http port to use

http_port = 4000

  1. Grafana 默认配置的是 3000 端口,但这个端口很多时候都被占用了。所以如果你的也占用了,那么可以在这里修改下。

连接配置

[database]

You can configure the database connection by specifying type, host, name, user and password

as separate properties or as on string using the url properties.

Either "mysql", "postgres" or "sqlite3", it's your choice

type = mysql

host = host.docker.internal:3306

name = grafana

user = root

If the password contains # or ; you have to wrap it with triple quotes. Ex """#password;"""

password = 123456

  1. 为了让 Grafana 的配置具有迁移性,也不至于删除在安装就丢失配置,那么这里可以选择配置数据库进行使用。

  2. 注意;你需要先在本地安装MySQL以及创建出一个grafana数据库。------ 连接后,会自动建表。

注意:host那里设置localhost或者ipv4地址都连接失败,设置host.docker.internal成功,目前不知道原因

2. datasource.yml

apiVersion: 1

datasources:

  • name: Prometheus

type: prometheus

access: proxy

url: http://prometheus:9090

isDefault: true

  1. 注意;因为 Grafana 使用的是 Prometheus 数据源,所以你需要在这里配置上。当然也可以不配置,在启动的 Grafana 线上进行配置。

3. prometheus.yml

global:

scrape_interval: 15s

scrape_configs:

  • job_name: 'x-api-app'

metrics_path: '/actuator/prometheus'

static_configs:

  • targets: [ '192.168.158.77:8080' ]
  1. 这里配置的是 prometheus.yml 对需要采集的 SpringBoot 应用访问地址。注意你需要替换为你的服务器IP和服务端口。

应用配置

POM 配置

chatgpt-data-app 模块下

XML 复制代码
<!-- 监控;actuator-上报、prometheus-采集、grafana-展示 -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
    <groupId>io.micrometer</groupId>
    <artifactId>micrometer-registry-prometheus</artifactId>
</dependency>
<dependency>
    <groupId>org.aspectj</groupId>
    <artifactId>aspectjweaver</artifactId>
</dependency>
  1. actuator、prometheus 是监控所需的内容,aspectjweaver 是本节需要使用 prometheus 添加自定义的埋点,而这个会用到切面。

chatgpt-data-trigger 模块下

XML 复制代码
<!-- 监控;actuator-上报、prometheus-采集、grafana-展示 -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
    <groupId>io.micrometer</groupId>
    <artifactId>micrometer-registry-prometheus</artifactId>
</dependency>

代码配置

1. 启动监听服务

java 复制代码
@EnableAspectJAutoProxy
@Configuration
public class PrometheusConfiguration {

    @Bean
    public CollectorRegistry collectorRegistry() {
        return new CollectorRegistry();
    }

    @Bean
    public PrometheusMeterRegistry prometheusMeterRegistry(PrometheusConfig config, CollectorRegistry collectorRegistry) {
        return new PrometheusMeterRegistry(config, collectorRegistry, Clock.SYSTEM);
    }

    @Bean
    public TimedAspect timedAspect(MeterRegistry registry) {
        return new TimedAspect(registry);
    }

    @Bean
    public CountedAspect countedAspect(MeterRegistry registry) {
        return new CountedAspect(registry);
    }

}

2. 自定义监控埋点

java 复制代码
@Timed(value = "no_pay_notify_order_job", description = "定时任务,订单支付状态更新")
    @Scheduled(cron = "0/3 * * * * ?")
    public void exec() {
    // ...
    }
  1. 你可以使用监控提供的注解,来对需要监控的方法进行埋点。@Timed 这样就可以采集到数据,在监控中配置了。

3. YML 配置

XML 复制代码
# 监控
management:
  endpoints:
    web:
      exposure:
        include: "*" # 暴露所有端点,包括自定义端点
  endpoint:
    metrics:
      enabled: true
    health:
      show-details: always # 显示详细的健康检查信息
  metrics:
    export:
      prometheus:
        enabled: true # 启用Prometheus
  prometheus:
    enabled: true # 启用Prometheus端点
  jmx:
    enabled: true # 启用JMX监控
  system:
    cpu:
      enabled: true # 启用CPU监控
    memory:
      enabled: true # 启用内存监控

可以访问 http://127.0.0.1:9090/service-discovery?search= - 查看采集数据。

监控配置

地址:http://127.0.0.1:4000/dashboards

介绍:Grafana 的监控,需要新建监控仪表。也可以使用导入功能。导入功能可以导入 Grafana 官网提供的各项模板,非常好用。

**常用代码**

4.1 CPU

sum(system_cpu_usage{job="x-api-app"}) / sum(system_cpu_count{job="x-api-app"}) * 100

4.2 磁盘

disk_free_bytes{job="x-api-app"}

4.3 连接池

hikaricp_connections{pool="HikariPool-1", job="x-api-app"}

4.4 请求量

sum by(instance, uri, exception) (increase(no_pay_notify_order_job_seconds_count{method="exec", job="x-api-app"}[5m]))

4.5 响应时间

sum by (uri) (increase(http_server_requests_seconds_sum{uri=~"/api/v1/chatgpt/chat/completions"}[1m]))

/sum by (uri) (increase(http_server_requests_seconds_count{uri=~"/api/v1/chatgpt/chat/completions"}[1m]))

相关推荐
川石课堂软件测试11 小时前
性能测试|docker容器下搭建JMeter+Grafana+Influxdb监控可视化平台
运维·javascript·深度学习·jmeter·docker·容器·grafana
逻辑与&&1 天前
[Prometheus学习笔记]从架构到案例,一站式教程
笔记·学习·prometheus
Walden-20201 天前
构建基于 DCGM-Exporter, Node exporter,PROMETHEUS 和 GRAFANA 构建算力监控系统
docker·容器·grafana·prometheus
牛角上的男孩2 天前
部署Prometheus、Grafana、Zipkin、Kiali监控度量Istio
grafana·prometheus·istio
福大大架构师每日一题3 天前
文心一言 VS 讯飞星火 VS chatgpt (383)-- 算法导论24.5 3题
prometheus
小安运维日记6 天前
Linux云计算 |【第五阶段】CLOUD-DAY10
linux·运维·云计算·k8s·grafana·prometheus
川石课堂软件测试6 天前
性能测试|linux服务器搭建JMeter+Grafana+Influxdb监控可视化平台
linux·服务器·python·jmeter·机器学习·grafana·1024程序员节
福大大架构师每日一题6 天前
29.2 golang实战项目log2metrics架构说明
架构·prometheus
花开了¥7 天前
prometheus 快速入门
prometheus
無爲謂7 天前
入门 | Kafka数据使用vector消费到Loki中使用grafana展示
分布式·kafka·vector·grafana·loki·日志存储·es限制解决办法