字节跳动(社招)四面算法原题

TikTok 进展

又是一期定时汇报 TikTok 进展的推文。

上周,美国总统拜登签署了价值 950 亿美元的一揽子对外援助法案。

该法案涉及强制字节跳动剥离旗下应用 TikTok 美国业务,即 针对 TikTok 非卖即禁的"强抢行为"开始进入九个月(270 天)的倒计时

签署法案后,TikTok 官号进行了回应:
TikTok 在社交媒体上的回应(原文) TikTok 在社交媒体上的回应(译文)

之后的几天,陆续出现过一些谣言,其中不乏「传字节跳动已经在密谋出售 TikTok 事宜」这样的消息。

但很快,就被官号高调辟谣了这些「外媒消息」:

TikTok 代言人,也是现任 CEO 周受资也在海外社交媒体中出镜重申:我们哪儿也不去,准备起诉。事实和宪法都站在我们这一边,期待再次获胜。

...

回归主线。

来一道和「字节跳动(社招)」四面相关的算法题。

据投稿人描述,当时其他问题回答得一般,但该算法题顺利做出,最终通过四面,感觉是被这道题救了一命。

题目描述

平台:LeetCode

题号:1879

给你两个整数数组 nums1nums2,它们长度都为 n

两个数组的 异或值之和 为 (nums1[0] XOR nums2[0]) + (nums1[1] XOR nums2[1]) + ... + (nums1[n - 1] XOR nums2[n - 1]) (下标从 0 开始)。

比方说,[1,2,3][3,2,1] 的 异或值之和 等于 (1 XOR 3) + (2 XOR 2) + (3 XOR 1) = 2 + 0 + 2 = 4

请你将 nums2 中的元素重新排列,使得异或值之和最小 。

请你返回重新排列之后的 异或值之和 。

示例 1:

复制代码
输入:nums1 = [1,2], nums2 = [2,3]

输出:2

解释:将 nums2 重新排列得到 [3,2] 。
异或值之和为 (1 XOR 3) + (2 XOR 2) = 2 + 0 = 2 。

示例 2:

复制代码
输入:nums1 = [1,0,3], nums2 = [5,3,4]

输出:8

解释:将 nums2 重新排列得到 [5,4,3] 。
异或值之和为 (1 XOR 5) + (0 XOR 4) + (3 XOR 3) = 4 + 4 + 0 = 8 。

提示:

状压 DP

这是一道「状压 DP」模板题。

为了方便,我们令下标从 开始。

「定义 为考虑前 个元素,且对 nums2 的使用情况为 时的最小异或值」 。其中 是一个长度为 的二进制数:若 中的第 位为 ,说明 nums2[k] 已被使用;若 中的第 位为 ,说明 nums2[k] 未被使用。

起始时,只有 ,其余均为无穷大 INF。 含义为在不考虑任何数,对 nums2 没有任何占用情况时,最小异或值为 。最终 即为答案。

不失一般性考虑 该如何转移,可以以 nums1[i] 是与哪个 nums2[j] 进行配对作为切入点:

  • 由于总共考虑了前 个成员,因此 中 的数量必然为 ,否则 就不是一个合法状态,跳过转移
  • 枚举 nums1[i] 是与哪一个 nums2[j] 进行配对的,且枚举的 需满足在 中的第 位值为 ,若满足则有

其中 prev 为将 中的第 位进行置零后的二进制数,即 prev = s ^ (1 << j),符号 ⊕ 代表异或操作。

Java 代码:

复制代码
class Solution {
    public int minimumXORSum(int[] nums1, int[] nums2) {
        int n = nums1.length, mask = 1 << n, INF = 0x3f3f3f3f;
        int[][] f = new int[n + 10][mask];
        for (int i = 0; i <= n; i++) Arrays.fill(f[i], INF);
        f[0][0] = 0;
        for (int i = 1; i <= n; i++) {
            for (int s = 0; s < mask; s++) {
                if (getCnt(s, n) != i) continue;
                for (int j = 1; j <= n; j++) {
                    if (((s >> (j - 1)) & 1) == 0) continue;
                    f[i][s] = Math.min(f[i][s], f[i - 1][s ^ (1 << (j - 1))] + (nums1[i - 1] ^ nums2[j - 1]));
                }
            }
        }
        return f[n][mask - 1];
    }
    int getCnt(int s, int n) {
        int ans = 0;
        for (int i = 0; i < n; i++) ans += (s >> i) & 1;
        return ans;
    }
}

C++ 代码:

复制代码
class Solution {
public:
    int minimumXORSum(vector<int>& nums1, vector<int>& nums2) {
        int n = nums1.size(), mask = 1 << n, INF = 0x3f3f3f3f;
        vector<vector<int>> f(n + 10, vector<int>(mask, INF));
        f[0][0] = 0;
        auto getCnt = [&](int s, int n) {
            int ans = 0;
            for (int i = 0; i < n; i++) ans += (s >> i) & 1;
            return ans;
        };
        for (int i = 1; i <= n; i++) {
            for (int s = 0; s < mask; s++) {
                if (getCnt(s, n) != i) continue;
                for (int j = 1; j <= n; j++) {
                    if (((s >> (j - 1)) & 1) == 0) continue;
                    f[i][s] = min(f[i][s], f[i - 1][s ^ (1 << (j - 1))] + (nums1[i - 1] ^ nums2[j - 1]));
                }
            }
        }
        return f[n][mask - 1];
    }
};

Python 代码:

复制代码
class Solution:
    def minimumXORSum(self, nums1: List[int], nums2: List[int]) -> int:
        n, mask, INF = len(nums1), 1 << len(nums1), 0x3f3f3f3f
        f = [[INF] * mask for _ in range(n + 10)]
        f[0][0] = 0
        for i in range(1, n + 1):
            for s in range(mask):
                if sum([1 for i in range(n) if (s >> i) & 1]) != i:
                    continue
                for j in range(1, n + 1):
                    if ((s >> (j - 1)) & 1) == 0:
                        continue
                    f[i][s] = min(f[i][s], f[i - 1][s ^ (1 << (j - 1))] + (nums1[i - 1] ^ nums2[j - 1]))
        return f[n][mask - 1]

TypeScript 代码:

复制代码
function minimumXORSum(nums1: number[], nums2: number[]): number {
    const n = nums1.length, mask = 1 << n, INF = 0x3f3f3f3f;
    const f: number[][] = new Array(n + 10).fill([]).map(() => new Array(mask).fill(INF));
    f[0][0] = 0;
    const getCnt = (s: number, n: number): number => {
        let ans = 0;
        for (let i = 0; i < n; i++) ans += (s >> i) & 1;
        return ans;
    };
    for (let i = 1; i <= n; i++) {
        for (let s = 0; s < mask; s++) {
            if (getCnt(s, n) !== i) continue;
            for (let j = 1; j <= n; j++) {
                if (((s >> (j - 1)) & 1) === 0) continue;
                f[i][s] = Math.min(f[i][s], f[i - 1][s ^ (1 << (j - 1))] + (nums1[i - 1] ^ nums2[j - 1]));
            }
        }
    }
    return f[n][mask - 1];
};
  • 时间复杂度:
  • 空间复杂度:

模拟退火

事实上,这道题还能使用「模拟退火」进行求解。

由于我们可以无限次对 nums2 进行打乱互换,先来思考如何衡量一个 nums2 排列的"好坏"。

一个简单的方式:固定计算 (nums1[0] XOR nums2[0]) + (nums1[1] XOR nums2[1]) + ... + (nums1[n - 1] XOR nums2[n - 1]) 作为衡量当前 nums2 的得分,得分越小,当前的 nums2 排列越好。

迭代开始前先对 nums2 进行一次随机打乱,随后每个回合随机选择 nums2 的两个成员进行互换,并比较互换前后的得分情况,若互换后变好,那么保留该互换操作;若变差,则以一定概率进行重置(重新换回来)。

重复迭代多次,使用一个全局变量 ans 保存下最小异或值之和。

即「模拟退火」的单次迭代基本流程:

  1. 随机选择两个下标,计算「交换下标元素前对应序列的得分」&「交换下标元素后对应序列的得分」
  2. 如果温度下降(交换后的序列更优),进入下一次迭代
  3. 如果温度上升(交换前的序列更优),以「一定的概率」恢复现场(再交换回来)

对于一个能够运用模拟退火求解的问题,最核心的是如何实现 calc 方法(即如何定义一个具体方案的得分),其余均为模板内容。

Java 代码(2024/04/29 可过):

复制代码
class Solution {
    int N = 400;
    double hi = 1e5, lo = 1e-5, fa = 0.90;
    Random random = new Random(20230823);
    void swap(int[] n, int a, int b) {
        int c = n[a];
        n[a] = n[b];
        n[b] = c;
    }
    int calc() {
        int res = 0;
        for (int i = 0; i < n; i++) res += n1[i] ^ n2[i];
        ans = Math.min(ans, res);
        return res;
    }
    void shuffle(int[] nums) {
        for (int i = n; i > 0; i--) swap(nums, random.nextInt(i), i - 1);
    }
    void sa() {
        shuffle(n2);
        for (double t = hi; t > lo; t *= fa) {
            int a = random.nextInt(n), b = random.nextInt(n);
            int prev = calc();
            swap(n2, a, b);
            int cur = calc(); 
            int diff = cur - prev; 
            if (Math.log(diff / t) >= random.nextDouble()) swap(n2, a, b);
        }
    }
    int[] n1, n2;
    int n;
    int ans = Integer.MAX_VALUE;
    public int minimumXORSum(int[] nums1, int[] nums2) {
        n1 = nums1; n2 = nums2;
        n = n1.length;
        while (N-- > 0) sa();
        return ans;
    }
}
  • 时间复杂度:启发式搜索不讨论时空复杂度
  • 空间复杂度:启发式搜索不讨论时空复杂度

最后

给大伙通知一下 📢 :

全网最低价 LeetCode 会员目前仍可用 ~

📅 年度会员:有效期加赠两个月!! ; 季度会员:有效期加赠两周!!

🧧 年度会员:获 66.66 现金红包!! ; 季度会员:获 22.22 现金红包!!

🎁 年度会员:参与当月丰厚专属实物抽奖(中奖率 > 30%)!!

专属链接:leetcode.cn/premium/?promoChannel=acoier

我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻。

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

相关推荐
Marktowin4 小时前
Mybatis-Plus更新操作时的一个坑
java·后端
赵文宇5 小时前
CNCF Dragonfly 毕业啦!基于P2P的镜像和文件分发系统快速入门,在线体验
后端
程序员爱钓鱼5 小时前
Node.js 编程实战:即时聊天应用 —— WebSocket 实现实时通信
前端·后端·node.js
Libby博仙6 小时前
Spring Boot 条件化注解深度解析
java·spring boot·后端
源代码•宸6 小时前
Golang原理剖析(Map 源码梳理)
经验分享·后端·算法·leetcode·golang·map
小周在成长6 小时前
动态SQL与MyBatis动态SQL最佳实践
后端
瓦尔登湖懒羊羊6 小时前
TCP的自我介绍
后端
小周在成长6 小时前
MyBatis 动态SQL学习
后端
子非鱼9216 小时前
SpringBoot快速上手
java·spring boot·后端