Linux下深度学习虚拟环境的搭建与模型训练

在深度学习实践中,环境配置是十分重要且免不了的一步。本文以 YOLOv4 模型,介绍在Linux下虚拟环境配置到模型训练的过程。

安装Miniconda:

Miniconda是Anaconda的一个轻量级版本,非常适合用于科学计算和数据处理。

复制代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

创建并激活Python环境:

为YOLOv4创建一个隔离的Python环境,避免依赖冲突。

复制代码
conda create -n yolov4 python=3.8.8
conda activate yolov4

使用以下命令检查PyTorch是否正确安装:

复制代码
import torch
print(torch.cuda.is_available())
print(torch.cuda.device_count())
print(torch.version.cuda)

配置镜像源:

使用清华大学提供的镜像源可以加快包的下载速度。

复制代码
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

安装PyTorch及依赖:

复制代码
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

YOLOv4的训练和测试可以通过多种方式实现,这里我们将介绍使用Darknet框架训练的方法。

YOLOv4在Darknet的源代码可以在GitHub上找到,下载地址是https://github.com/AlexeyAB/darknet,数据集的构建与划分请参考官方的文档进行操作。

YOLOv4 模型训练与测试

复制代码
darknet detector train data/voc2021.data cfg/yolov4.cfg yolov4.conv.137 -map

模型剪枝优化

复制代码
python prune.py --percent 0.5 --weights ./runs/train/exp20/weights/last.pt --data ./data/VOC.yaml

PyTorch多GPU训练

提高训练效率,缩短训练周期。

复制代码
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/voc.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights 'weights/yolov7.pt' --name yolov7 --hyp data/hyp.scratch.p5.yaml

模型测试

对训练好的模型进行效果验证。

复制代码
python test.py --weights weights/best.pt --data data/voc.yaml --img 640 --conf 0.5 --iou 0.65

一些高级特性和工具可以帮助更好地开发和监控模型性能

WandB(Weights & Biases): 用于模型训练过程中的性能监控和可视化。

复制代码
python
import wandb
wandb login

Visdom: 另一种数据可视化工具,适合实时数据监控

复制代码
conda install visdom -i https://pypi.douban.com/simple/
python -m visdom.server
相关推荐
Funny_AI_LAB几秒前
AI Agent最新重磅综述:迈向高效智能体,记忆、工具学习和规划综述
人工智能·学习·算法·语言模型·agi
zhangshuang-peta14 分钟前
超越Composio:ContextForge与Peta作为集成平台的替代方案
人工智能·ai agent·mcp·peta
power 雀儿16 分钟前
Transformer输入嵌入与绝对位置编码
人工智能·深度学习·transformer
X54先生(人文科技)17 分钟前
元创力开源项目介绍
人工智能·架构·零知识证明
(; ̄ェ ̄)。17 分钟前
机器学习入门(十八)特征降维
人工智能·机器学习
pp起床20 分钟前
Gen_AI 第三课 大模型内部原理
人工智能
薛不痒20 分钟前
深度学习的补充:神经网络处理回归问题(人脸关键点识别)&自然语言处理的介绍
深度学习·神经网络·回归
UI设计兰亭妙微23 分钟前
UI 设计组件的价值与实践+常用 UI 设计组件核心规范清单
人工智能·ui
OJAC11125 分钟前
当计算机专业站在十字路口:近屿智能看见了什么?
人工智能
m0_6038887132 分钟前
Toward Cognitive Supersensing in Multimodal Large Language Model
人工智能·机器学习·ai·语言模型·论文速览