Linux下深度学习虚拟环境的搭建与模型训练

在深度学习实践中,环境配置是十分重要且免不了的一步。本文以 YOLOv4 模型,介绍在Linux下虚拟环境配置到模型训练的过程。

安装Miniconda:

Miniconda是Anaconda的一个轻量级版本,非常适合用于科学计算和数据处理。

复制代码
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh

创建并激活Python环境:

为YOLOv4创建一个隔离的Python环境,避免依赖冲突。

复制代码
conda create -n yolov4 python=3.8.8
conda activate yolov4

使用以下命令检查PyTorch是否正确安装:

复制代码
import torch
print(torch.cuda.is_available())
print(torch.cuda.device_count())
print(torch.version.cuda)

配置镜像源:

使用清华大学提供的镜像源可以加快包的下载速度。

复制代码
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

安装PyTorch及依赖:

复制代码
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

YOLOv4的训练和测试可以通过多种方式实现,这里我们将介绍使用Darknet框架训练的方法。

YOLOv4在Darknet的源代码可以在GitHub上找到,下载地址是https://github.com/AlexeyAB/darknet,数据集的构建与划分请参考官方的文档进行操作。

YOLOv4 模型训练与测试

复制代码
darknet detector train data/voc2021.data cfg/yolov4.cfg yolov4.conv.137 -map

模型剪枝优化

复制代码
python prune.py --percent 0.5 --weights ./runs/train/exp20/weights/last.pt --data ./data/VOC.yaml

PyTorch多GPU训练

提高训练效率,缩短训练周期。

复制代码
python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/voc.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights 'weights/yolov7.pt' --name yolov7 --hyp data/hyp.scratch.p5.yaml

模型测试

对训练好的模型进行效果验证。

复制代码
python test.py --weights weights/best.pt --data data/voc.yaml --img 640 --conf 0.5 --iou 0.65

一些高级特性和工具可以帮助更好地开发和监控模型性能

WandB(Weights & Biases): 用于模型训练过程中的性能监控和可视化。

复制代码
python
import wandb
wandb login

Visdom: 另一种数据可视化工具,适合实时数据监控

复制代码
conda install visdom -i https://pypi.douban.com/simple/
python -m visdom.server
相关推荐
东方佑5 分钟前
当人眼遇见神经网络:用残差结构模拟视觉调焦的奇妙类比
人工智能·深度学习·神经网络
智驱力人工智能13 分钟前
深度学习在离岗检测中的应用
人工智能·深度学习·安全·视觉检测·离岗检测
hjs_deeplearning17 分钟前
认知篇#12:基于非深度学习方法的图像特征提取
人工智能·深度学习·目标检测
Tony Bai21 分钟前
【AI应用开发第一课】11 实战串讲:用 Go 构建一个 AI 驱动的 GitHub Issue 助手
人工智能·issue
阿杜杜不是阿木木29 分钟前
开始 ComfyUI 的 AI 绘图之旅-Flux.1 ControlNet (十)
人工智能·深度学习·ai·ai作画·lora
格林威35 分钟前
Linux使用-MySQL的使用
linux·运维·人工智能·数码相机·mysql·计算机视觉·视觉检测
币须赢40 分钟前
机器人智能系统架构:小脑
人工智能·机器人
陈敬雷-充电了么-CEO兼CTO1 小时前
BLIP-2革新多模态预训练:QFormer桥接视觉语言,零样本任务性能飙升10.7%!
人工智能·gpt·机器学习·机器人·多模态·blip·多模态大模型
victory04311 小时前
疾病语音数据集 WAV格式音频
深度学习·音视频