机器学习常见面试题总结

1、泛华误差的分解

训练模型的目的------最小化损失函数------泛化误差 可以分解为偏差(Biase)方差(Variance)噪声(Noise)。

bias:拟合值和真实值之间有较大的偏差。所有可能的训练数据集 训练出的所有模型 的输出的平均值真实模型的输出值之间的差异。

varience:反映的是拟合值波动的情况。不同的训练数据集训练出的模型输出值之间的差异。

Noise:噪声 的存在是学习算法所无法解决的问题,数据的质量决定了学习的上限。假设在数据已经给定的情况下,此时上限已定,我们要做的就是尽可能的接近这个上限。

2、偏差、方差与过拟合、欠拟合的关系?

偏差(Bias)与方差(Variance) - 知乎 (zhihu.com)

3、trade-off between bias and variance

泛华误差=偏差(Biase)+方差(Variance)+噪声(Noise)。

从本质上讲,如果你使模型更复杂并添加更多变量,你将会失去一些 Bias 但获得一些 Variance,这就是我们所说的权衡(tradeoff)。这也是为什么我们在建模的过程中,不希望这个模型同时拥有高的偏差和方差。

4、KNN对比K-means

有监督和无监督。

都是基于距离的。

相关推荐
sdyeswlw9 分钟前
一二三物联网配电站房综合监控系统,多站集中管控,让运维少走弯路!
人工智能·科技·物联网
AI科技星10 分钟前
时空运动的几何约束:张祥前统一场论中圆柱螺旋运动光速不变性的严格数学证明与物理诠释
服务器·数据结构·人工智能·python·科技·算法·生活
All The Way North-13 分钟前
PyTorch SmoothL1Loss 全面解析:数学定义、梯度推导、API 规范与 logits 误用纠正
pytorch·深度学习·机器学习·smooth l1损失函数·回归损失函数
AIsdhuang16 分钟前
2025 AI培训权威榜:深度评测与趋势前瞻
人工智能·python·物联网
源于花海29 分钟前
迁移学习基础知识——总体思路和度量准则(距离和相似度)
人工智能·机器学习·迁移学习
档案宝档案管理29 分钟前
档案管理效率低?档案管理系统如何实现从“人工管档”到“智能管档”?
大数据·数据库·人工智能·档案·档案管理
老欧学视觉31 分钟前
0012机器学习KNN算法
人工智能·算法·机器学习
汤姆yu37 分钟前
基于springboot+ai的健康管理系统
人工智能·spring boot·后端
北岛寒沫44 分钟前
北京大学国家发展研究院 经济学辅修 经济学原理课程笔记(第三课 需求与供应弹性)
数据库·人工智能·笔记
北京青翼科技1 小时前
【TES818 】基于 VU13P FPGA+ZYNQ SOC 的 8 路 100G 光纤通道处理平台
图像处理·人工智能·fpga开发·信号处理·智能硬件