机器学习常见面试题总结

1、泛华误差的分解

训练模型的目的------最小化损失函数------泛化误差 可以分解为偏差(Biase)方差(Variance)噪声(Noise)。

bias:拟合值和真实值之间有较大的偏差。所有可能的训练数据集 训练出的所有模型 的输出的平均值真实模型的输出值之间的差异。

varience:反映的是拟合值波动的情况。不同的训练数据集训练出的模型输出值之间的差异。

Noise:噪声 的存在是学习算法所无法解决的问题,数据的质量决定了学习的上限。假设在数据已经给定的情况下,此时上限已定,我们要做的就是尽可能的接近这个上限。

2、偏差、方差与过拟合、欠拟合的关系?

偏差(Bias)与方差(Variance) - 知乎 (zhihu.com)

3、trade-off between bias and variance

泛华误差=偏差(Biase)+方差(Variance)+噪声(Noise)。

从本质上讲,如果你使模型更复杂并添加更多变量,你将会失去一些 Bias 但获得一些 Variance,这就是我们所说的权衡(tradeoff)。这也是为什么我们在建模的过程中,不希望这个模型同时拥有高的偏差和方差。

4、KNN对比K-means

有监督和无监督。

都是基于距离的。

相关推荐
两棵雪松39 分钟前
如何通过向量化技术比较两段文本是否相似?
人工智能
heart000_140 分钟前
128K 长文本处理实战:腾讯混元 + 云函数 SCF 构建 PDF 摘要生成器
人工智能·自然语言处理·pdf
敲键盘的小夜猫1 小时前
LLM复杂记忆存储-多会话隔离案例实战
人工智能·python·langchain
开开心心_Every1 小时前
便捷的Office批量转PDF工具
开发语言·人工智能·r语言·pdf·c#·音视频·symfony
cooldream20091 小时前
「源力觉醒 创作者计划」_基于 PaddlePaddle 部署 ERNIE-4.5-0.3B 轻量级大模型实战指南
人工智能·paddlepaddle·文心大模型
亚里随笔1 小时前
L0:让大模型成为通用智能体的强化学习新范式
人工智能·llm·大语言模型·rlhf
白杆杆红伞伞2 小时前
T01_神经网络
人工智能·深度学习·神经网络
槑槑紫2 小时前
深度学习pytorch整体流程
人工智能·pytorch·深度学习
盼小辉丶2 小时前
TensorFlow深度学习实战——去噪自编码器详解与实现
人工智能·深度学习·tensorflow
胖达不服输3 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理