深度学习pytorch整体流程

一、数据处理

复制代码
from torch.utils.data import Dataset, DataLoader
import torch
import numpy as np
import pandas as pd
import os

class custom_dataset(Dataset):
    def __init__(self, root_path, file_path, transform, target_transform):
        self.data = pd.read_csv(os.path.join(root_path, file_path))
        self.transform = transform
        self.target_transform = target_transform
    def __len__(self):
        return len(self.data)
    def __getitem__(self, idx):
        row = self.data.iloc[idx]
        data = row['data']
        target = row['target']
        if self.transform:
            data = self.transform(data)
        if self.target_transform:
            target = self.target_transform(target)
        return data, target

train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)

二、模型建立、训练、测试

复制代码
import torch
from torch import nn

class network(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim):
        super().__init__()
        self.linear = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            nn.ReLU(),
            nn.Linear(hidden_dim, output_dim),
            nn.ReLU()
        )
    def forward(self, x):
        x = self.linear(x)
        return x

if torch.cuda.is_available():
    device = torch.device('cuda')
else:
    device = torch.device('cpu')

model = network(input_dim=8, hidden_dim=16, output_dim=8).to(torch.device('cpu'))

learning_rate = 1e-3
batch_size = 64
epochs = 5

loss_fn = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

def train(dataloader, model, loss_fn, optimizer, device):
    model.train()
    for batch, (x, y) in enumerate(dataloader):
        x, y = x.to(device), y.to(device)
        pred = model(x)
        loss = loss_fn(pred, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if batch % 100 == 0:
            loss = loss.item()
            print(f'train_loss:{loss}')


def test(dataloader, model, loss_fn):
    num_batches = len(dataloader)
    model.eval()
    with torch.no_grad():
        for x, y in dataloader:
            pred = model(x)
            test_loss += loss_fn(pred, y).item()
    test_loss /= num_batches
    print(f'test_loss:{test_loss}')

for t in range(epochs):
    print(f'epoch {t+1}\n---------------------------')
    train(train_dataloader, model, loss_fn, optimizer, device)
    test(test_dataloader, model, loss_fn)
相关推荐
CV工程师丁Sir5 分钟前
Vibe Coding vs 规范驱动开发:AI 时代编程范式的冲突与融合
人工智能·驱动开发
移远通信9 分钟前
不止 “听懂”,更能 “感知”!移远通信全新AI 音频模组 重新定义智能家居“听觉”逻辑
人工智能·音视频·智能家居
掘金酱20 分钟前
🎆仲夏掘金赛:码上争锋,金石成川 | 8月金石计划
前端·人工智能·后端
宇钶宇夕23 分钟前
图像处理中级篇 [1]—— 彩色照相机的效果与预处理
人工智能·数码相机·计算机视觉
一起搞IT吧43 分钟前
Camera相机人脸识别系列专题分析之十九:MTK ISP6S平台FDNode传递三方FFD到APP流程解析
android·图像处理·人工智能·数码相机·计算机视觉
sonrisa_1 小时前
大语言模型API付费?
人工智能·语言模型·自然语言处理
8Qi81 小时前
深度学习(鱼书)day06--神经网络的学习(后两节)
人工智能·python·深度学习·神经网络
CoovallyAIHub1 小时前
原来工业 AI 异常检测只做了一半?AnomalyNCD 补上了“最关键一环”
深度学习·算法·计算机视觉
小沛91 小时前
Spring AI Alibaba JManus:前后端异步消息回显机制深度解析
人工智能·spring·jmanus
Allen_LVyingbo1 小时前
智能AI医疗物资/耗材管理系统升级改造方案分析
人工智能·自然语言处理·开源·健康医疗·扩展屏应用开发