鸢尾花分类-pytorch实现

前言

本文用pytorch实现了鸢尾花分类,数据不多,只做代码展示用,后续有升级版本。

代码

复制代码
'''
-*- coding: utf-8 -*-
@File  : main.py
@Author: Shanmh
@Time  : 2024/05/06 上午9:37
@Function:
'''
import torch
from sklearn import datasets
import torch.nn as nn

#1.数据准备
dataset=datasets.load_iris()
print(dataset["data"][:10])
print(dataset["target"][:10])
i_data=torch.FloatTensor(dataset["data"])
i_target=torch.LongTensor(dataset["target"])

#2.模型构建
class IrisModel(nn.Module):
    def __init__(self,input_n=4,hidden_n=20,output_n=3):
        super().__init__()
        self.line1=nn.Linear(input_n,hidden_n)
        self.line2=nn.Linear(hidden_n,output_n)
        self.relu=nn.ReLU()
    def forward(self,x):
        x=self.line1(x)
        x=self.relu(x)
        x=self.line2(x)
        return x

#3.参数定义
epoch=500
lr=0.01

model=IrisModel()
optimizer=torch.optim.SGD(model.parameters(),lr=lr) #定义优化器
loss_fun=torch.nn.CrossEntropyLoss() #多分类采用交叉熵损失函数


for e in range(epoch):
    out=model(i_data)
    loss=loss_fun(out,i_target)
    optimizer.zero_grad()  # 梯度清零
    loss.backward()  # 前馈操作
    optimizer.step()


# 5. 得出结果
out = model(i_data)
prediction = torch.max(out, 1)[1]
pred_y = prediction.data.numpy()
target_y = i_target.data.numpy()
result=pred_y==target_y
print(f"模型预测准确度,acc:{'{:.2f}'.format(len(result[result==True])/len(result))}%")

展望

1.还在考虑中怎么进行建模,建一个4维空间用来直接看出输入与输出的关系

2.有尝试过标签平滑,从结果上看不出什么区别,再想怎么可视化出来

3.怎么从结果倒推出可用的输入数据

相关推荐
Jay Kay1 分钟前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
风指引着方向11 分钟前
归约操作优化:ops-math 的 Sum/Mean/Max 实现
人工智能·wpf
机器之心12 分钟前
英伟达世界模型再进化,一个模型驱动所有机器人!机器人的GPT时刻真正到来
人工智能·openai
纯爱掌门人18 分钟前
终焉轮回里,藏着 AI 与人类的答案
前端·人工智能·aigc
人工智能AI技术22 分钟前
Transformer:大模型的“万能骨架”
人工智能
uesowys1 小时前
Apache Spark算法开发指导-Factorization machines classifier
人工智能·算法
人工智能AI技术1 小时前
预训练+微调:大模型的“九年义务教育+专项补课”
人工智能
aircrushin1 小时前
中国多模态大模型历史性突破:智源Emu3自回归统一范式技术深度解读
人工智能
Lsx_2 小时前
前端视角下认识 AI Agent 和 LangChain
前端·人工智能·agent
aiguangyuan2 小时前
使用LSTM进行情感分类:原理与实现剖析
人工智能·python·nlp