鸢尾花分类-pytorch实现

前言

本文用pytorch实现了鸢尾花分类,数据不多,只做代码展示用,后续有升级版本。

代码

复制代码
'''
-*- coding: utf-8 -*-
@File  : main.py
@Author: Shanmh
@Time  : 2024/05/06 上午9:37
@Function:
'''
import torch
from sklearn import datasets
import torch.nn as nn

#1.数据准备
dataset=datasets.load_iris()
print(dataset["data"][:10])
print(dataset["target"][:10])
i_data=torch.FloatTensor(dataset["data"])
i_target=torch.LongTensor(dataset["target"])

#2.模型构建
class IrisModel(nn.Module):
    def __init__(self,input_n=4,hidden_n=20,output_n=3):
        super().__init__()
        self.line1=nn.Linear(input_n,hidden_n)
        self.line2=nn.Linear(hidden_n,output_n)
        self.relu=nn.ReLU()
    def forward(self,x):
        x=self.line1(x)
        x=self.relu(x)
        x=self.line2(x)
        return x

#3.参数定义
epoch=500
lr=0.01

model=IrisModel()
optimizer=torch.optim.SGD(model.parameters(),lr=lr) #定义优化器
loss_fun=torch.nn.CrossEntropyLoss() #多分类采用交叉熵损失函数


for e in range(epoch):
    out=model(i_data)
    loss=loss_fun(out,i_target)
    optimizer.zero_grad()  # 梯度清零
    loss.backward()  # 前馈操作
    optimizer.step()


# 5. 得出结果
out = model(i_data)
prediction = torch.max(out, 1)[1]
pred_y = prediction.data.numpy()
target_y = i_target.data.numpy()
result=pred_y==target_y
print(f"模型预测准确度,acc:{'{:.2f}'.format(len(result[result==True])/len(result))}%")

展望

1.还在考虑中怎么进行建模,建一个4维空间用来直接看出输入与输出的关系

2.有尝试过标签平滑,从结果上看不出什么区别,再想怎么可视化出来

3.怎么从结果倒推出可用的输入数据

相关推荐
蹦蹦跳跳真可爱58913 分钟前
Python----大模型(使用api接口调用大模型)
人工智能·python·microsoft·语言模型
小爷毛毛_卓寿杰14 分钟前
突破政务文档理解瓶颈:基于多模态大模型的智能解析系统详解
人工智能·llm
Mr.Winter`15 分钟前
障碍感知 | 基于3D激光雷达的三维膨胀栅格地图构建(附ROS C++仿真)
人工智能·机器人·自动驾驶·ros·具身智能·环境感知
好开心啊没烦恼24 分钟前
Python 数据分析:numpy,抽提,整数数组索引与基本索引扩展(元组传参)。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy·pandas
磊叔的技术博客30 分钟前
LLM 系列(六):模型推理篇
人工智能·面试·llm
爱分享的飘哥30 分钟前
【V6.0 - 听觉篇】当AI学会“听”:用声音特征捕捉视频的“情绪爽点”
人工智能·音视频
fzyz12337 分钟前
Windows系统下WSL从C盘迁移方案
人工智能·windows·深度学习·wsl
BIYing_Aurora39 分钟前
【IPMV】图像处理与机器视觉:Lec13 Robust Estimation with RANSAC
图像处理·人工智能·算法·计算机视觉
数据与人工智能律师1 小时前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链
CHANG_THE_WORLD1 小时前
封装一个png的编码解码操作
图像处理·人工智能·计算机视觉