鸢尾花分类-pytorch实现

前言

本文用pytorch实现了鸢尾花分类,数据不多,只做代码展示用,后续有升级版本。

代码

复制代码
'''
-*- coding: utf-8 -*-
@File  : main.py
@Author: Shanmh
@Time  : 2024/05/06 上午9:37
@Function:
'''
import torch
from sklearn import datasets
import torch.nn as nn

#1.数据准备
dataset=datasets.load_iris()
print(dataset["data"][:10])
print(dataset["target"][:10])
i_data=torch.FloatTensor(dataset["data"])
i_target=torch.LongTensor(dataset["target"])

#2.模型构建
class IrisModel(nn.Module):
    def __init__(self,input_n=4,hidden_n=20,output_n=3):
        super().__init__()
        self.line1=nn.Linear(input_n,hidden_n)
        self.line2=nn.Linear(hidden_n,output_n)
        self.relu=nn.ReLU()
    def forward(self,x):
        x=self.line1(x)
        x=self.relu(x)
        x=self.line2(x)
        return x

#3.参数定义
epoch=500
lr=0.01

model=IrisModel()
optimizer=torch.optim.SGD(model.parameters(),lr=lr) #定义优化器
loss_fun=torch.nn.CrossEntropyLoss() #多分类采用交叉熵损失函数


for e in range(epoch):
    out=model(i_data)
    loss=loss_fun(out,i_target)
    optimizer.zero_grad()  # 梯度清零
    loss.backward()  # 前馈操作
    optimizer.step()


# 5. 得出结果
out = model(i_data)
prediction = torch.max(out, 1)[1]
pred_y = prediction.data.numpy()
target_y = i_target.data.numpy()
result=pred_y==target_y
print(f"模型预测准确度,acc:{'{:.2f}'.format(len(result[result==True])/len(result))}%")

展望

1.还在考虑中怎么进行建模,建一个4维空间用来直接看出输入与输出的关系

2.有尝试过标签平滑,从结果上看不出什么区别,再想怎么可视化出来

3.怎么从结果倒推出可用的输入数据

相关推荐
努力还债的学术吗喽几秒前
【速通】深度学习模型调试系统化方法论:从问题定位到性能优化
人工智能·深度学习·学习·调试·模型·方法论
云边云科技32 分钟前
零售行业新店网络零接触部署场景下,如何选择SDWAN
运维·服务器·网络·人工智能·安全·边缘计算·零售
audyxiao00142 分钟前
为了更强大的空间智能,如何将2D图像转换成完整、具有真实尺度和外观的3D场景?
人工智能·计算机视觉·3d·iccv·空间智能
Monkey的自我迭代1 小时前
机器学习总复习
人工智能·机器学习
大千AI助手1 小时前
GitHub Copilot:AI编程助手的架构演进与真实世界影响
人工智能·深度学习·大模型·github·copilot·ai编程·codex
用户5191495848451 小时前
耶稣蓝队集体防护Bash脚本:多模块协同防御实战
人工智能·aigc
☺����1 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码1
人工智能·python·音视频
Black_Rock_br2 小时前
本地部署的终极多面手:Qwen2.5-Omni-3B,视频剪、音频混、图像生、文本写全搞定
人工智能·音视频
电商API大数据接口开发Cris2 小时前
Java Spring Boot 集成淘宝 SDK:实现稳定可靠的商品信息查询服务
前端·数据挖掘·api
用什么都重名2 小时前
《GPT-OSS 模型全解析:OpenAI 回归开源的 Mixture-of-Experts 之路》
人工智能·大模型·openai·gpt-oss