【YOLO改进】换遍IoU损失函数之Innerciou Loss(基于MMYOLO)

替换Inner CIoU损失函数(基于MMYOLO)

由于MMYOLO中没有实现Inner CIoU损失函数,所以需要在mmyolo/models/iou_loss.py中添加Inner CIoU的计算和对应的iou_mode,修改完以后在终端运行

python setup.py install

再在配置文件中进行修改即可。修改例子如下:

    elif iou_mode == "innerciou":
        ratio=1.0
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        x1 = bbox1_x1 + w1_
        y1 = bbox1_y1 + h1_
        x2 = bbox2_x1 + w2_
        y2 = bbox2_y1 + h2_

        inner_b1_x1, inner_b1_x2, inner_b1_y1, inner_b1_y2 = x1 - w1_ * ratio, x1 + w1_ * ratio, \
                                                             y1 - h1_ * ratio, y1 + h1_ * ratio
        inner_b2_x1, inner_b2_x2, inner_b2_y1, inner_b2_y2 = x2 - w2_ * ratio, x2 + w2_ * ratio, \
                                                             y2 - h2_ * ratio, y2 + h2_ * ratio
        inner_inter = (torch.min(inner_b1_x2, inner_b2_x2) - torch.max(inner_b1_x1, inner_b2_x1)).clamp(0) * \
                      (torch.min(inner_b1_y2, inner_b2_y2) - torch.max(inner_b1_y1, inner_b2_y1)).clamp(0)
        inner_union = w1 * ratio * h1 * ratio + w2 * ratio * h2 * ratio - inner_inter + eps
        inner_iou = inner_inter / inner_union

        # CIoU = IoU - ( (ρ^2(b_pred,b_gt) / c^2) + (alpha x v) )

        # calculate enclose area (c^2)
        enclose_area = enclose_w**2 + enclose_h**2 + eps

        # calculate ρ^2(b_pred,b_gt):
        # euclidean distance between b_pred(bbox2) and b_gt(bbox1)
        # center point, because bbox format is xyxy -> left-top xy and
        # right-bottom xy, so need to / 4 to get center point.
        rho2_left_item = ((bbox2_x1 + bbox2_x2) - (bbox1_x1 + bbox1_x2))**2 / 4
        rho2_right_item = ((bbox2_y1 + bbox2_y2) -
                           (bbox1_y1 + bbox1_y2))**2 / 4
        rho2 = rho2_left_item + rho2_right_item  # rho^2 (ρ^2)

        # Width and height ratio (v)
        wh_ratio = (4 / (math.pi**2)) * torch.pow(
            torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)

        with torch.no_grad():
            alpha = wh_ratio / (wh_ratio - ious + (1 + eps))

        # innerCIoU
        ious = inner_iou - ((rho2 / enclose_area) + (alpha * wh_ratio))

修改后的配置文件(以configs/yolov5/yolov5_s-v61_syncbn_8xb16-300e_coco.py为例)

_base_ = ['../_base_/default_runtime.py', '../_base_/det_p5_tta.py']

# ========================Frequently modified parameters======================
# -----data related-----
data_root = 'data/coco/'  # Root path of data
# Path of train annotation file
train_ann_file = 'annotations/instances_train2017.json'
train_data_prefix = 'train2017/'  # Prefix of train image path
# Path of val annotation file
val_ann_file = 'annotations/instances_val2017.json'
val_data_prefix = 'val2017/'  # Prefix of val image path

num_classes = 80  # Number of classes for classification
# Batch size of a single GPU during training
train_batch_size_per_gpu = 16
# Worker to pre-fetch data for each single GPU during training
train_num_workers = 8
# persistent_workers must be False if num_workers is 0
persistent_workers = True

# -----model related-----
# Basic size of multi-scale prior box
anchors = [
    [(10, 13), (16, 30), (33, 23)],  # P3/8
    [(30, 61), (62, 45), (59, 119)],  # P4/16
    [(116, 90), (156, 198), (373, 326)]  # P5/32
]

# -----train val related-----
# Base learning rate for optim_wrapper. Corresponding to 8xb16=128 bs
base_lr = 0.01
max_epochs = 300  # Maximum training epochs

model_test_cfg = dict(
    # The config of multi-label for multi-class prediction.
    multi_label=True,
    # The number of boxes before NMS
    nms_pre=30000,
    score_thr=0.001,  # Threshold to filter out boxes.
    nms=dict(type='nms', iou_threshold=0.65),  # NMS type and threshold
    max_per_img=300)  # Max number of detections of each image

# ========================Possible modified parameters========================
# -----data related-----
img_scale = (640, 640)  # width, height
# Dataset type, this will be used to define the dataset
dataset_type = 'YOLOv5CocoDataset'
# Batch size of a single GPU during validation
val_batch_size_per_gpu = 1
# Worker to pre-fetch data for each single GPU during validation
val_num_workers = 2

# Config of batch shapes. Only on val.
# It means not used if batch_shapes_cfg is None.
batch_shapes_cfg = dict(
    type='BatchShapePolicy',
    batch_size=val_batch_size_per_gpu,
    img_size=img_scale[0],
    # The image scale of padding should be divided by pad_size_divisor
    size_divisor=32,
    # Additional paddings for pixel scale
    extra_pad_ratio=0.5)

# -----model related-----
# The scaling factor that controls the depth of the network structure
deepen_factor = 0.33
# The scaling factor that controls the width of the network structure
widen_factor = 0.5
# Strides of multi-scale prior box
strides = [8, 16, 32]
num_det_layers = 3  # The number of model output scales
norm_cfg = dict(type='BN', momentum=0.03, eps=0.001)  # Normalization config

# -----train val related-----
affine_scale = 0.5  # YOLOv5RandomAffine scaling ratio
loss_cls_weight = 0.5
loss_bbox_weight = 0.05
loss_obj_weight = 1.0
prior_match_thr = 4.  # Priori box matching threshold
# The obj loss weights of the three output layers
obj_level_weights = [4., 1., 0.4]
lr_factor = 0.01  # Learning rate scaling factor
weight_decay = 0.0005
# Save model checkpoint and validation intervals
save_checkpoint_intervals = 10
# The maximum checkpoints to keep.
max_keep_ckpts = 3
# Single-scale training is recommended to
# be turned on, which can speed up training.
env_cfg = dict(cudnn_benchmark=True)

# ===============================Unmodified in most cases====================
model = dict(
    type='YOLODetector',
    data_preprocessor=dict(
        type='mmdet.DetDataPreprocessor',
        mean=[0., 0., 0.],
        std=[255., 255., 255.],
        bgr_to_rgb=True),
    backbone=dict(
        ##使用YOLOv8的主干网络

        type='YOLOv8CSPDarknet',
        deepen_factor=deepen_factor,
        widen_factor=widen_factor,
        norm_cfg=norm_cfg,
        act_cfg=dict(type='SiLU', inplace=True)

    ),
    neck=dict(
        type='YOLOv5PAFPN',
        deepen_factor=deepen_factor,
        widen_factor=widen_factor,
        in_channels=[256, 512, 1024],
        out_channels=[256, 512, 1024],
        num_csp_blocks=3,
        norm_cfg=norm_cfg,
        act_cfg=dict(type='SiLU', inplace=True)),
    bbox_head=dict(
        type='YOLOv5Head',
        head_module=dict(
            type='YOLOv5HeadModule',
            num_classes=num_classes,
            in_channels=[256, 512, 1024],
            widen_factor=widen_factor,
            featmap_strides=strides,
            num_base_priors=3),
        prior_generator=dict(
            type='mmdet.YOLOAnchorGenerator',
            base_sizes=anchors,
            strides=strides),
        # scaled based on number of detection layers
        loss_cls=dict(
            type='mmdet.CrossEntropyLoss',
            use_sigmoid=True,
            reduction='mean',
            loss_weight=loss_cls_weight *
            (num_classes / 80 * 3 / num_det_layers)),
        # 修改此处实现IoU损失函数的替换
        loss_bbox=dict(
            type='IoULoss',
            iou_mode='innerciou',
            bbox_format='xywh',
            eps=1e-7,
            reduction='mean',
            loss_weight=loss_bbox_weight * (3 / num_det_layers),
            return_iou=True),
        loss_obj=dict(
            type='mmdet.CrossEntropyLoss',
            use_sigmoid=True,
            reduction='mean',
            loss_weight=loss_obj_weight *
            ((img_scale[0] / 640)**2 * 3 / num_det_layers)),
        prior_match_thr=prior_match_thr,
        obj_level_weights=obj_level_weights),
    test_cfg=model_test_cfg)

albu_train_transforms = [
    dict(type='Blur', p=0.01),
    dict(type='MedianBlur', p=0.01),
    dict(type='ToGray', p=0.01),
    dict(type='CLAHE', p=0.01)
]

pre_transform = [
    dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
    dict(type='LoadAnnotations', with_bbox=True)
]

train_pipeline = [
    *pre_transform,
    dict(
        type='Mosaic',
        img_scale=img_scale,
        pad_val=114.0,
        pre_transform=pre_transform),
    dict(
        type='YOLOv5RandomAffine',
        max_rotate_degree=0.0,
        max_shear_degree=0.0,
        scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
        # img_scale is (width, height)
        border=(-img_scale[0] // 2, -img_scale[1] // 2),
        border_val=(114, 114, 114)),
    dict(
        type='mmdet.Albu',
        transforms=albu_train_transforms,
        bbox_params=dict(
            type='BboxParams',
            format='pascal_voc',
            label_fields=['gt_bboxes_labels', 'gt_ignore_flags']),
        keymap={
            'img': 'image',
            'gt_bboxes': 'bboxes'
        }),
    dict(type='YOLOv5HSVRandomAug'),
    dict(type='mmdet.RandomFlip', prob=0.5),
    dict(
        type='mmdet.PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
                   'flip_direction'))
]

train_dataloader = dict(
    batch_size=train_batch_size_per_gpu,
    num_workers=train_num_workers,
    persistent_workers=persistent_workers,
    pin_memory=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=train_ann_file,
        data_prefix=dict(img=train_data_prefix),
        filter_cfg=dict(filter_empty_gt=False, min_size=32),
        pipeline=train_pipeline))

test_pipeline = [
    dict(type='LoadImageFromFile', file_client_args=_base_.file_client_args),
    dict(type='YOLOv5KeepRatioResize', scale=img_scale),
    dict(
        type='LetterResize',
        scale=img_scale,
        allow_scale_up=False,
        pad_val=dict(img=114)),
    dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
    dict(
        type='mmdet.PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor', 'pad_param'))
]

val_dataloader = dict(
    batch_size=val_batch_size_per_gpu,
    num_workers=val_num_workers,
    persistent_workers=persistent_workers,
    pin_memory=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        test_mode=True,
        data_prefix=dict(img=val_data_prefix),
        ann_file=val_ann_file,
        pipeline=test_pipeline,
        batch_shapes_cfg=batch_shapes_cfg))

test_dataloader = val_dataloader

param_scheduler = None
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(
        type='SGD',
        lr=base_lr,
        momentum=0.937,
        weight_decay=weight_decay,
        nesterov=True,
        batch_size_per_gpu=train_batch_size_per_gpu),
    constructor='YOLOv5OptimizerConstructor')

default_hooks = dict(
    param_scheduler=dict(
        type='YOLOv5ParamSchedulerHook',
        scheduler_type='linear',
        lr_factor=lr_factor,
        max_epochs=max_epochs),
    checkpoint=dict(
        type='CheckpointHook',
        interval=save_checkpoint_intervals,
        save_best='auto',
        max_keep_ckpts=max_keep_ckpts))

custom_hooks = [
    dict(
        type='EMAHook',
        ema_type='ExpMomentumEMA',
        momentum=0.0001,
        update_buffers=True,
        strict_load=False,
        priority=49)
]

val_evaluator = dict(
    type='mmdet.CocoMetric',
    proposal_nums=(100, 1, 10),
    ann_file=data_root + val_ann_file,
    metric='bbox')
test_evaluator = val_evaluator

train_cfg = dict(
    type='EpochBasedTrainLoop',
    max_epochs=max_epochs,
    val_interval=save_checkpoint_intervals)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
相关推荐
敖行客 Allthinker4 分钟前
让 AMD GPU 在大语言模型推理中崭露头角:机遇与挑战
人工智能·语言模型·自然语言处理
赛逸展张胜15 分钟前
CES Asia是一个关于什么的展会?
大数据·人工智能·科技
Coovally AI模型快速验证44 分钟前
YOLO11全解析:从原理到实战,全流程体验下一代目标检测
人工智能·yolo·目标检测·机器学习·计算机视觉·目标跟踪·yolo11
湫ccc1 小时前
《Opencv》基础操作详解(2)
人工智能·opencv·计算机视觉
羑悻的小杀马特1 小时前
【AIGC篇】畅谈游戏开发设计中AIGC所发挥的不可或缺的作用
c++·人工智能·aigc·游戏开发
火山方舟1 小时前
解密!企业级智能客服高效运营的秘密武器 | 大模型流程设计与Prompt模版
前端·人工智能·稀土
CES_Asia1 小时前
国资助力科技创新,闪耀CES Asia 2025
人工智能·科技·智能手机·智能音箱·智能电视
eric-sjq2 小时前
基于xiaothink对Wanyv-50M模型进行c-eval评估
人工智能·python·语言模型·自然语言处理·github
是十一月末2 小时前
机器学习之KNN算法预测数据和数据可视化
人工智能·python·算法·机器学习·信息可视化
工业互联网专业2 小时前
基于OpenCV和Python的人脸识别系统_django
人工智能·python·opencv·django·毕业设计·源码·课程设计