无监督式学习

1.是什么?

无监督式学习与监督式学习**最大的区别就是:**没有事先给定的训练实例,它是自动对输入的示例进行分类或者分群;
优点:不需要标签数据,极大程度上扩大了我们的数据样本,其次不受监督信息的偏见,可能考虑到新的信息

**关联规则:**根据输入的数据得到他们之间的关联

**纬度缩减:**数据之间可能存在一定的关系,然后我们可以进行降维,加快数据运算速度

2.应用:聚类分析

2.1是什么:

根据对象属性的相似度,将其分为不同的类别;(客户分析,基因聚类,新闻关联)

2.2 Kmeans算法

首先要告诉计算机你需要分成几类,然后他会根据中心点计算数据的距离,然后进行分类;

2.4 MeanShift均值漂移聚类

需要定义半径,中心区域半径内会不断聚集周围的节点,直至形成类别(自动发现类别)

2.5 DBSCAN算法

基于密度的空间聚类算法
特点: 1.基于密度 中心点进行扩张来筛选出有效数据,如果密度比较低 的话,这些数据就会过滤掉**(过滤噪声)** 2.然后基于密度符合的有效数据进行周围的扩招直至不满足条件

相关推荐
chenzhou__12 小时前
LinuxC语言并发程序笔记(第二十天)
linux·c语言·笔记·学习
立志成为大牛的小牛13 小时前
数据结构——四十九、B树的删除与插入
数据结构·学习·程序人生·考研·算法
理人综艺好会15 小时前
redis学习之基础数据结构
数据结构·redis·学习
charlie11451419120 小时前
从 0 开始:在 WSL + VSCode 上利用 Maven 构建 Java Spring Boot 工程
java·笔记·vscode·后端·学习·maven·springboot
e***74951 天前
Spring Security 官网文档学习
java·学习·spring
山河亦问安1 天前
Spring原理编码学习
java·学习·spring
思成不止于此1 天前
【C++ 数据结构】二叉搜索树:原理、实现与核心操作全解析
开发语言·数据结构·c++·笔记·学习·搜索二叉树·c++40周年
钟屿1 天前
Back to Basics: Let Denoising Generative Models Denoise 论文阅读学习
论文阅读·人工智能·笔记·学习·计算机视觉
d111111111d1 天前
SPI通信协议--在STM32中介绍(学习笔记)
笔记·stm32·单片机·嵌入式硬件·学习
断水客1 天前
如何在手机上搭建Linux学习环境
linux·运维·学习