数据可视化训练第二天(对比Python与numpy中的ndarray的效率并且可视化表示)

绪论

千里之行始于足下;继续坚持

1.对比Python和numpy的性能

使用魔法指令%timeit进行对比

需求:

  • 实现两个数组的加法
  • 数组 A 是 0 到 N-1 数字的平方
  • 数组 B 是 0 到 N-1 数字的立方
python 复制代码
import numpy as np
def numpy_sum(text_num):
    """numpy的测试函数"""
    arra=np.arange(text_num) ** 2
    arrb=np.arange(text_num) ** 3
    return arra+arrb

def python_sum(text_num):
	"""原生Python的测试函数"""
    ab_sum=[]
    a=[value**2 for value in range(0,text_num)]
    b=[value**3 for value in range(0,text_num)]
    for i in range(0,text_num):
        ab_sum.append(a[i]+b[i])
        
    return ab_sum

text_num=100

#保存Python的测试时间
#100,1000的数组长度测试起来时间可能比较小;可视化不太方便
python_times=[]
#进行到1000000次的时间测试
while text_num <= 1000000:
    result= %timeit -o python_sum(text_num)
    text_num=text_num*10
    python_times.append(result.average)

#保存numpy的测试时间
numpy_times=[]
text_num=100
while text_num <= 1000000:
    result= %timeit -o numpy_sum(text_num)
    numpy_times.append(result.average)
    text_num=text_num*10

下面通过折线图进行对比

python 复制代码
#数据可视化对比
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter

x_values=[100,1000,10000,100000,1000000]
python_y_values=np.array(python_times)*1000000
numpy_y_values=np.array(numpy_times)*1000000
fig,ax=plt.subplots()
ax.plot(x_values,python_y_values,linewidth=3,label='python')
ax.plot(x_values,numpy_y_values,linewidth=3,label='numpy')
ax.set_title("Comparing Numpy's Time with Python",fontsize=14)
ax.set_xlabel('text sum',fontsize=14)
ax.set_ylabel('time/us',fontsize=14)
#设置显示所有刻度
#ax.set_xticks(x_values,minor=True)
#使x轴完全表示,使用formatter自定义格式
formatter=ScalarFormatter(useMathText=True)#使用数学格式表示
formatter.set_powerlimits((0,7))
ax.xaxis.set_major_formatter(formatter)
ax.legend()#显示label标签
plt.show(

绘制柱状图

python 复制代码
#绘制柱状图
fig,ax=plt.subplots()
bar_width=0.35
ax.bar(x_values,python_y_values,bar_width,label='Python')
ax.bar(x_values,numpy_y_values,bar_width,label='Numpy')

ax.legend()#legend() 函数用于添加图例到图形上,就是右上角的图形
plt.tight_layout()
plt.show()

100和1000的时间太短了;可以从100000开始到100000000这样可视化会比较好看

相关推荐
应用市场2 小时前
构建自定义命令行工具 - 打造专属指令体
开发语言·windows·python
东方佑2 小时前
从字符串中提取重复子串的Python算法解析
windows·python·算法
Dfreedom.2 小时前
一文掌握Python四大核心数据结构:变量、结构体、类与枚举
开发语言·数据结构·python·变量·数据类型
一半烟火以谋生2 小时前
Python + Pytest + Allure 自动化测试报告教程
开发语言·python·pytest
叶子丶苏3 小时前
第八节_PySide6基本窗口控件_按钮类控件(QAbstractButton)
python·pyqt
百锦再4 小时前
对前后端分离与前后端不分离(通常指服务端渲染)的架构进行全方位的对比分析
java·开发语言·python·架构·eclipse·php·maven
Blossom.1185 小时前
把AI“刻”进玻璃:基于飞秒激光量子缺陷的随机数生成器与边缘安全实战
人工智能·python·单片机·深度学习·神经网络·安全·机器学习
CodeCraft Studio5 小时前
【能源与流程工业案例】KBC借助TeeChart 打造工业级数据可视化平台
java·信息可视化·.net·能源·teechart·工业可视化·工业图表
Kratzdisteln5 小时前
【Python OOP Diary 1.1】题目二:简单计算器,改错与优化
python·面向对象编程
小白银子5 小时前
零基础从头教学Linux(Day 53)
linux·运维·python