【机器学习300问】82、RMSprop梯度下降优化算法的原理是什么?

RMSprop,全称Root Mean Square Propagation,中文名称"均方根传播"算法。让我来举个例子给大家介绍一下它的原理!

一、通过举例来感性认识

建议你第一次看下面的例子时忽略小括号里的内容,在看完本文当你对RMSprop有了一定理解时再回过头来读一次这个小例子,这次带上小括号的内容一起读,相信你会有更深刻的体会。

想象一下你正在健身房锻炼,目标是让肌肉(我们的模型参数)变得更加强壮有效(准确预测或分类)。RMSprop就像是你的私人健身教练,它特别擅长调整你的训练计划(学习率),确保你在每次举重(梯度下降)时既不会因为负重太轻而效果甚微,也不会因为负重太重而受伤(过度调整导致震荡不收敛)。

具体来说,当你做重量训练时,教练RMSprop会观察你每一次举重的疲劳程度(历史梯度平方的平均值),并据此动态调整你下一次应该举起的重量(学习率)。如果某次你举得很吃力(梯度较大),意味着可能需要稍微减轻重量(减小学习率),让你的肌肉可以恢复并逐步增强;反之,如果感觉轻松(梯度较小),则可以适当增加重量(增大学习率),以加速进步。

二、通过定义来理性认识

RMSprop是一种自适应学习率方法,用于优化梯度下降算法。主要针对梯度下降法在非凸优化问题中学习率难以选择的问题进行了改进。RMSprop的核心思想是对每个参数使用不同的学习率,这些学习率是根据参数最近梯度的大小自适应调整的。它通过引入一个衰减系数来控制历史梯度的影响,使得学习率更加适应不同参数的情况。RMSprop算法的定义如下:

假设有一个待最小化的目标函数,其中是模型参数向量,RMSprop对每个参数进行更新,更新规则为:

  1. 计算目标函数关于的梯度:
  2. 计算梯度平方的指数移动平均值:
  3. 更新参数:

|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 符号 | 解释 |
| | 在时间步处梯度的估计 |
| | 梯度平方的指数加权移动平均,用于调整每个参数的学习率。类似于EWMA,它对过去梯度的平方给予一定权重的平均 |
| | 梯度平方的移动平均的衰减率,它是人为设定的一个较接近1的超参数,常用的值如 0.9 |
| | 全局学习率 |
| | 一个很小的常数(例如),用于数值稳定性,防止除以零 |

三、RMSprop梯度下降优化算法的优点

RMSProp它的提出是为了解决Adagrad算法在长期训练过程中可能遇到的学习率逐渐减小的问题。想象一下,如果你在学习新技能时,每次犯错后都以倍增的努力去纠正,那么很快你就会感到疲惫并放弃。Adagrad就是这样,它累积了历史上所有的梯度信息,导致后期学习率变得非常小,几乎无法继续学习。而RMSProp则像是给你一个"遗忘"的功能,让你不那么严格地记住每一个错误,而是让旧的错误逐渐淡化,这样你就可以保持一个较为稳定的学习节奏。

(1)自适应学习率

RMSprop算法能够为每个参数独立地调整学习率,使得学习过程对参数的初始学习率设置不那么敏感。

(2)加速收敛

通过使用梯度平方的指数移动平均来调整学习率,RMSprop能够避免梯度的急剧变化,从而在训练中更稳定,通常能够加速收敛。

相关推荐
_不会dp不改名_3 分钟前
leetcode_1382 将二叉搜索树变平衡树
算法·leetcode·职场和发展
小许学java4 分钟前
Spring AI快速入门以及项目的创建
java·开发语言·人工智能·后端·spring·ai编程·spring ai
人工智能技术派20 分钟前
Qwen-Audio:一种新的大规模音频-语言模型
人工智能·语言模型·音视频
lpfasd12325 分钟前
从OpenAI发布会看AI未来:中国就业市场的重构与突围
人工智能·重构
greentea_201331 分钟前
Codeforces Round 173 B. Digits(2043)
c++·算法
春末的南方城市1 小时前
清华&字节开源HuMo: 打造多模态可控的人物视频,输入文字、图片、音频,生成电影级的视频,Demo、代码、模型、数据全开源。
人工智能·深度学习·机器学习·计算机视觉·aigc
whltaoin1 小时前
Java 后端与 AI 融合:技术路径、实战案例与未来趋势
java·开发语言·人工智能·编程思想·ai生态
中杯可乐多加冰1 小时前
smardaten AI + 无代码开发实践:基于自然语言交互快速开发【苏超赛事管理系统】
人工智能
Hy行者勇哥1 小时前
数据中台的数据源与数据处理流程
大数据·前端·人工智能·学习·个人开发
岁月宁静1 小时前
AI 时代,每个程序员都该拥有个人提示词库:从效率工具到战略资产的蜕变
前端·人工智能·ai编程