python:机器学习特征优选

作者:CSDN @ 养乐多

在Python中进行机器学习特征选择的方法有很多种。以下是一些常用的方法:

  • 过滤法(Filter Methods):通过统计方法或者相关性分析来评估每个特征的重要性,然后选择最相关的特征。常用的过滤方法包括相关系数、方差分析等。
  • 包装法(Wrapper Methods):使用特定的机器学习算法来评估不同特征子集的性能,例如递归特征消除(Recursive Feature Elimination,RFE)。
  • 嵌入法(Embedded Methods):在训练过程中直接考虑特征选择,例如使用Lasso回归和决策树等算法,这些算法可以自动选择最重要的特征。
  • 其他方法:主成分分析(Principal Component Analysis,PCA),基于模型的特征选择(Model-Based Feature Selection)等。

本文将介绍在 Python 中进行机器学习特征选择的方法和代码。包括过滤法(Filter Methods)、包装法(Wrapper Methods)、嵌入法(Embedded Methods)和其他方法。


文章目录


一、特征数据

特征数据的格式如下图所示,其中红框中的一列是标签,其余列是特征变量。

1.1 将用于分析的数据从GEE下载到本地

1.2 从其他方法获取

如果是遥感数据的特征,你可以从GEE上或者ArcGIS上对特征影像进行提取值到点操作,然后把矢量数据的属性表格保存为csv格式,以便进行本文后续操作。

如果是非遥感数据,也就可以手动制作特征变量csv文件。

二、读取数据

javascript 复制代码
import pandas as pd

# 从CSV文件读取数据
data = pd.read_csv('your_data.csv')

# 通过列名获取目标变量y和其余所有列为特征变量X
y = data['landcover']  # 替换'landcover'为目标变量的列名
X = data.drop(columns=['landcover'])  # 删除目标变量列后,剩余的所有列作为特征变量X

三、过滤法

参考博客《python:机器学习特征优选(过滤法)》。

四、包装法

参考博客《python:机器学习特征优选(包装法)》。

五、嵌入法

参考博客《python:机器学习特征优选(嵌入法)》。

六、其他方法

参考博客《python:机器学习特征优选(主成分分析法)》。

相关推荐
wjs202430 分钟前
状态模式(State Pattern)
开发语言
我命由我1234534 分钟前
Kotlin 数据容器 - List(List 概述、创建 List、List 核心特性、List 元素访问、List 遍历)
java·开发语言·jvm·windows·java-ee·kotlin·list
liulilittle35 分钟前
C++ TAP(基于任务的异步编程模式)
服务器·开发语言·网络·c++·分布式·任务·tap
im_AMBER1 小时前
学习日志19 python
python·学习
励志要当大牛的小白菜2 小时前
ART配对软件使用
开发语言·c++·qt·算法
mortimer4 小时前
安装NVIDIA Parakeet时,我遇到的两个Pip“小插曲”
python·github
NeoFii4 小时前
Day 22: 复习
机器学习
@昵称不存在4 小时前
Flask input 和datalist结合
后端·python·flask
爱装代码的小瓶子4 小时前
数据结构之队列(C语言)
c语言·开发语言·数据结构
赵英英俊5 小时前
Python day25
python