python:机器学习特征优选

作者:CSDN @ 养乐多

在Python中进行机器学习特征选择的方法有很多种。以下是一些常用的方法:

  • 过滤法(Filter Methods):通过统计方法或者相关性分析来评估每个特征的重要性,然后选择最相关的特征。常用的过滤方法包括相关系数、方差分析等。
  • 包装法(Wrapper Methods):使用特定的机器学习算法来评估不同特征子集的性能,例如递归特征消除(Recursive Feature Elimination,RFE)。
  • 嵌入法(Embedded Methods):在训练过程中直接考虑特征选择,例如使用Lasso回归和决策树等算法,这些算法可以自动选择最重要的特征。
  • 其他方法:主成分分析(Principal Component Analysis,PCA),基于模型的特征选择(Model-Based Feature Selection)等。

本文将介绍在 Python 中进行机器学习特征选择的方法和代码。包括过滤法(Filter Methods)、包装法(Wrapper Methods)、嵌入法(Embedded Methods)和其他方法。


文章目录


一、特征数据

特征数据的格式如下图所示,其中红框中的一列是标签,其余列是特征变量。

1.1 将用于分析的数据从GEE下载到本地

1.2 从其他方法获取

如果是遥感数据的特征,你可以从GEE上或者ArcGIS上对特征影像进行提取值到点操作,然后把矢量数据的属性表格保存为csv格式,以便进行本文后续操作。

如果是非遥感数据,也就可以手动制作特征变量csv文件。

二、读取数据

javascript 复制代码
import pandas as pd

# 从CSV文件读取数据
data = pd.read_csv('your_data.csv')

# 通过列名获取目标变量y和其余所有列为特征变量X
y = data['landcover']  # 替换'landcover'为目标变量的列名
X = data.drop(columns=['landcover'])  # 删除目标变量列后,剩余的所有列作为特征变量X

三、过滤法

参考博客《python:机器学习特征优选(过滤法)》。

四、包装法

参考博客《python:机器学习特征优选(包装法)》。

五、嵌入法

参考博客《python:机器学习特征优选(嵌入法)》。

六、其他方法

参考博客《python:机器学习特征优选(主成分分析法)》。

相关推荐
zhangfeng11332 分钟前
R geo 然后读取数据的时候 make.names(vnames, unique = TRUE): invalid multibyte string 9
开发语言·chrome·r语言·生物信息
Sally璐璐5 分钟前
Go组合式继承:灵活替代方案
开发语言·后端·golang
zzzsde5 分钟前
【c++】类和对象(4)
开发语言·c++
码熔burning7 分钟前
从 new 到 GC:一个Java对象的内存分配之旅
java·开发语言·jvm
晨非辰8 分钟前
#C语言——刷题攻略:牛客编程入门训练(十二):攻克 循环控制(四)、循环输出图形(一),轻松拿捏!
c语言·开发语言·经验分享·笔记·其他·学习方法·visual studio
gou1234123410 分钟前
Go语言io.Copy深度解析:高效数据复制的终极指南
开发语言·golang·php
白玉cfc22 分钟前
【OC】单例模式
开发语言·ios·单例模式·objective-c
十六点五22 分钟前
Java NIO的底层原理
java·开发语言·python
猿究院-赵晨鹤23 分钟前
Java I/O 模型:BIO、NIO 和 AIO
java·开发语言
跟橙姐学代码30 分钟前
不要再用 print() 了!Python logging 库才是调试的终极武器
前端·python