平滑 3d 坐标

3d平滑

python 复制代码
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

class SmoothOperator:
    def smooth(self, vertices):
        # 使用一维平均池化进行平滑
        vertices_smooth = F.avg_pool1d(
            vertices.permute(0, 2, 1),
            kernel_size=3,
            stride=1,
            padding=1
        ).permute(0, 2, 1)
        # 保持顶点的首尾不变,只修改中间部分
        vertices[:, 1:-1] = vertices_smooth[:, 1:-1]
        return vertices

# 创建一些示例数据
t = np.linspace(0, 2 * np.pi, 100)
x = np.sin(t) + np.random.normal(0, 0.1, t.shape)  # 添加一些噪声
y = np.cos(t) + np.random.normal(0, 0.1, t.shape)
z = t
vertices = torch.tensor(np.stack([x, y, z], axis=1), dtype=torch.float32).unsqueeze(0)

# 实例化平滑操作对象并应用平滑
smooth_operator = SmoothOperator()
vertices_smooth = smooth_operator.smooth(vertices.clone())

# 将PyTorch张量转换为NumPy数组以用于绘图
vertices_np = vertices.squeeze(0).numpy()
vertices_smooth_np = vertices_smooth.squeeze(0).numpy()

# 创建图形和3D轴
fig = plt.figure(figsize=(12, 6))

# 绘制原始数据
ax1 = fig.add_subplot(121, projection='3d')
ax1.plot(vertices_np[:, 0], vertices_np[:, 1], vertices_np[:, 2], label='Original', color='b')
ax1.set_title("Original Data")
ax1.legend()

# 绘制平滑后的数据
ax2 = fig.add_subplot(122, projection='3d')
ax2.plot(vertices_smooth_np[:, 0], vertices_smooth_np[:, 1], vertices_smooth_np[:, 2], label='Smoothed', color='r')
ax2.set_title("Smoothed Data")
ax2.legend()

# 显示图形
plt.show()
相关推荐
Theodore_102224 分钟前
深度学习(9)导数与计算图
人工智能·深度学习·机器学习·矩阵·线性回归
PPIO派欧云1 小时前
PPIO上新GPU实例模板,一键部署PaddleOCR-VL
人工智能
TGITCIC3 小时前
金融RAG落地之痛:不在模型,而在数据结构
人工智能·ai大模型·ai agent·ai智能体·开源大模型·金融ai·金融rag
chenzhiyuan20186 小时前
《十五五规划》下的AI边缘计算机遇:算力下沉与工业智能化
人工智能·边缘计算
whaosoft-1436 小时前
51c深度学习~合集11
人工智能
Tiandaren6 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
领航猿1号7 小时前
Pytorch 内存布局优化:Contiguous Memory
人工智能·pytorch·深度学习·机器学习
综合热讯7 小时前
宠智灵宠物识别AI:从犬猫到鸟鱼的全生态智能识别
人工智能·宠物
zskj_zhyl7 小时前
智慧康养新篇章:七彩喜如何重塑老年生活的温度与尊严
大数据·人工智能·科技·物联网·生活
永霖光电_UVLED8 小时前
IVWorks率先将8英寸GaN纳米线片商业化
人工智能·神经网络·生成对抗网络