平滑 3d 坐标

3d平滑

python 复制代码
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

class SmoothOperator:
    def smooth(self, vertices):
        # 使用一维平均池化进行平滑
        vertices_smooth = F.avg_pool1d(
            vertices.permute(0, 2, 1),
            kernel_size=3,
            stride=1,
            padding=1
        ).permute(0, 2, 1)
        # 保持顶点的首尾不变,只修改中间部分
        vertices[:, 1:-1] = vertices_smooth[:, 1:-1]
        return vertices

# 创建一些示例数据
t = np.linspace(0, 2 * np.pi, 100)
x = np.sin(t) + np.random.normal(0, 0.1, t.shape)  # 添加一些噪声
y = np.cos(t) + np.random.normal(0, 0.1, t.shape)
z = t
vertices = torch.tensor(np.stack([x, y, z], axis=1), dtype=torch.float32).unsqueeze(0)

# 实例化平滑操作对象并应用平滑
smooth_operator = SmoothOperator()
vertices_smooth = smooth_operator.smooth(vertices.clone())

# 将PyTorch张量转换为NumPy数组以用于绘图
vertices_np = vertices.squeeze(0).numpy()
vertices_smooth_np = vertices_smooth.squeeze(0).numpy()

# 创建图形和3D轴
fig = plt.figure(figsize=(12, 6))

# 绘制原始数据
ax1 = fig.add_subplot(121, projection='3d')
ax1.plot(vertices_np[:, 0], vertices_np[:, 1], vertices_np[:, 2], label='Original', color='b')
ax1.set_title("Original Data")
ax1.legend()

# 绘制平滑后的数据
ax2 = fig.add_subplot(122, projection='3d')
ax2.plot(vertices_smooth_np[:, 0], vertices_smooth_np[:, 1], vertices_smooth_np[:, 2], label='Smoothed', color='r')
ax2.set_title("Smoothed Data")
ax2.legend()

# 显示图形
plt.show()
相关推荐
老蒋新思维2 分钟前
创客匠人启示录:AI 时代知识变现的效率革命 —— 从人力驱动到智能体自动化的跃迁
网络·人工智能·网络协议·tcp/ip·数据挖掘·创始人ip·创客匠人
月亮!5 分钟前
IoT测试全解析:从嵌入式到云端的质量链条
运维·网络·人工智能·python·物联网·测试工具·自动化
shayudiandian7 分钟前
Hugging Face Transformers快速上手
人工智能
TextIn智能文档云平台10 分钟前
大语言模型怎么提取文档信息
人工智能·语言模型·自然语言处理
白日做梦Q13 分钟前
GAN 在图像增强中的双刃剑:画质提升 vs 伪影生成
人工智能·深度学习·计算机视觉
九章云极DataCanvas13 分钟前
麦肯锡11月最新报告《Agentic AI安全部署手册》:Agentic AI安全不是“贴膏药”,而是“打地基”(附报告原文
人工智能·科技·安全·云计算·云算力
沐雪架构师22 分钟前
AI大模型Agent面试精选15题(第二辑)
人工智能·面试·职场和发展
golang学习记37 分钟前
Spring AI 1.1 新特性详解:五大核心升级全面提升AI应用开发体验
java·人工智能·spring
初九之潜龙勿用37 分钟前
基于openEuler操作系统上的AI图像分类应用开发实操与测试
人工智能·分类·数据挖掘
AI算法蒋同学39 分钟前
5 个用于人工智能基础设施的 Docker 容器
人工智能·docker·容器