平滑 3d 坐标

3d平滑

python 复制代码
import torch
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

class SmoothOperator:
    def smooth(self, vertices):
        # 使用一维平均池化进行平滑
        vertices_smooth = F.avg_pool1d(
            vertices.permute(0, 2, 1),
            kernel_size=3,
            stride=1,
            padding=1
        ).permute(0, 2, 1)
        # 保持顶点的首尾不变,只修改中间部分
        vertices[:, 1:-1] = vertices_smooth[:, 1:-1]
        return vertices

# 创建一些示例数据
t = np.linspace(0, 2 * np.pi, 100)
x = np.sin(t) + np.random.normal(0, 0.1, t.shape)  # 添加一些噪声
y = np.cos(t) + np.random.normal(0, 0.1, t.shape)
z = t
vertices = torch.tensor(np.stack([x, y, z], axis=1), dtype=torch.float32).unsqueeze(0)

# 实例化平滑操作对象并应用平滑
smooth_operator = SmoothOperator()
vertices_smooth = smooth_operator.smooth(vertices.clone())

# 将PyTorch张量转换为NumPy数组以用于绘图
vertices_np = vertices.squeeze(0).numpy()
vertices_smooth_np = vertices_smooth.squeeze(0).numpy()

# 创建图形和3D轴
fig = plt.figure(figsize=(12, 6))

# 绘制原始数据
ax1 = fig.add_subplot(121, projection='3d')
ax1.plot(vertices_np[:, 0], vertices_np[:, 1], vertices_np[:, 2], label='Original', color='b')
ax1.set_title("Original Data")
ax1.legend()

# 绘制平滑后的数据
ax2 = fig.add_subplot(122, projection='3d')
ax2.plot(vertices_smooth_np[:, 0], vertices_smooth_np[:, 1], vertices_smooth_np[:, 2], label='Smoothed', color='r')
ax2.set_title("Smoothed Data")
ax2.legend()

# 显示图形
plt.show()
相关推荐
Deepoch24 分钟前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手25 分钟前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛13329 分钟前
多智能体协作中的通信协议演化
人工智能
基咯咯38 分钟前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能
白日做梦Q1 小时前
深度学习模型评估指标深度解析:不止于准确率的科研量化方法
人工智能·深度学习
Yyyyy123jsjs1 小时前
外汇Tick数据交易时段详解与Python实战分析
人工智能·python·区块链
张彦峰ZYF1 小时前
提示词工程实战指南:从概念认知到可验证的高质量 Prompt 设计
人工智能·提示词工程实战指南·高质量 prompt 设计
不易思不逸2 小时前
SAM2 测试
人工智能·python
V1ncent_xuan3 小时前
坐标转化Halcon&Opencv
人工智能·opencv·计算机视觉