1 .1 任务一
1 .1.1 恢复默认配置
#绘图风格,恢复默认配置
plt.rcParams.update(plt.rcParamsDefault)#恢复默认配置
或者
1 .1.2 汉字和负号的设置
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]="SimHei"
plt.rcParams["axes.unicode_minus"]=False
1 .1.3 Matplotlib的基础学习部分
基础学习部分:
重点参考编码风格、折线图、柱形图、饼图以及子图和坐标轴等的设置。
https://matplotlib.org/stable/tutorials/introductory/quick_start.html
1 .2 任务二(验证性操作)
https://matplotlib.org/stable/gallery/
- 子图、坐标轴和图形
- 图像、轮廓和字段

- 线、条和标记

要求:分别从上面三个模块中,选择一个图形进行复现。并说明下选择的图形适合用来处理哪一类型的数据(时变、比例、关系、复杂数据)。
1 .3 任务三 实训(每一张图都需要加上标题、轴标签等基础信息)
实验的每一步都需要截图,养成良好的习惯,也是给自己做了一份很好的笔记。
- 实训1 分析各产业就业人员数据特征间的关系
人口数据总共拥有4个特征,分别为就业人员、第一产业人员、第二产业人员、第三产业就业人员。根据3个产业就业人员的数量绘制散点图和折线图。部分数据如表所示。根据各个特征随时间推移发生的变化情况,可以分析出未来3各产业就业人员的变化趋势。
表 各产业就业人员的数量(部分)
|------|----------|--------------|--------------|--------------|
| 年份 | 就业人员(万人) | 第一产业就业人员(万人) | 第二产业就业人员(万人) | 第三产业就业人员(万人) |
| 2000 | 72085 | 36042.5 | 16219.1 | 19823.4 |
| 2001 | 72797 | 36398.5 | 16233.7 | 20164.8 |
| 2002 | 73280 | 36640 | 15681.9 | 20958.1 |
| 2003 | 73736 | 36204.4 | 15927 | 21604.6 |
| 2004 | 74264 | 34829.8 | 16709.4 | 22724.8 |
| 2005 | 74647 | 33441.9 | 17766 | 23439.2 |
| 2006 | 74978 | 31940.6 | 18894.5 | 24142.9 |
| 2007 | 75321 | 30731 | 20186 | 24404 |
| 2008 | 75564 | 29923.3 | 20553.4 | 25087.2 |
要求实现:
- 使用pandas库读取3个产业就业人员数据。

- 绘制2000-2019年各产业就业人员散点图。


- 绘制2000-2019年各产业就业人员折线图;


- 分析各产业就业人员数据特征的分布与分散状况。
基于1的数据,绘制3个产业就业人员数据的饼图、柱状图和箱线图。通过柱形图可以对比分析各产业就业人员数量,通过饼图可以发现各产业就业人员的变化,绘制每个特征的箱线图则可以发现不同特征增长或减少的速率变化。
要求实现:
- 使用pandas库读取3个产业就业人员数据。
- 绘制2019年各产业就业人员饼图。


- 绘制2019年各个产业就业人员柱形图(要求绘制分组和堆叠柱形图)




- 绘制2000-2019年各产业就业人员年末总人数箱线图。


2 任务四 拓展训练
Matplotlib从1.1.0版本以后就开始支持绘制动画。该类FuncAnimation允许我们通过传递一个迭代修改绘图数据的函数来创建动画。这是通过在各种 (示例:、 等)上使用setter方法来实现的。一个通常的 对象需要一个 我们想要动画的对象和一个 修改绘制在图形上的数据的函数func 。它使用帧 参数来确定动画的长度。interval参数用于确定绘制两帧之间的时间(以毫秒为单位)。
Matplotlib 中的动画过程可以用两种不同的方式来思考:
FuncAnimation:为第一帧生成数据,然后为每一帧修改此数据以创建动画图。
ArtistAnimation:生成一个艺术家列表(可迭代),将在动画的每一帧中绘制。
FuncAnimation在速度和内存方面更有效率,因为它一次绘制一个艺术家然后修改它。另一方面ArtistAnimation是灵活的,因为它允许任何可迭代的艺术家按顺序动画。
2 .1 官网案例复现( ArtistAnimation )
