【京东电商API接口】 | 京东某商品销量数据分析可视化

Python当打之年

当打之年,专注于各领域Python技术,量的积累,质的飞跃。后台回复:【可视化项目源码】可获取可视化系列文章源码和数据

本期将利用Python分析「京东商品数据接口」,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

Pandas --- 数据处理

Pyecharts --- 数据可视化

  1. 导入模块

    import jieba
    import pandas as pd
    from pyecharts.charts import Line
    from pyecharts.charts import Bar
    from pyecharts.charts import Pie
    from pyecharts.charts import Map
    from pyecharts.charts import WordCloud
    from pyecharts import options as opts
    import warnings
    warnings.filterwarnings('ignore')

  2. Pandas数据处理

2.1 读取数据

复制代码
df = pd.read_excel("./销量数据.xlsx")

2.2 查看数据信息

复制代码
df.info()

2.3 查看数据描述信息

复制代码
df.describe()
  1. Pyecharts数据可视化

3.1 销量(瓶)地图分布

复制代码
def map1():
    map1 = (
        Map()
        .add('',
             data,
             'china',
             is_map_symbol_show=False,
             label_opts=opts.LabelOpts(is_show=False)
            )
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='1-销量(瓶)地图分布',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%"
            ),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(
                pos_bottom='10%',
                pos_left='20%'
            ),

        )
    )
  • 云南、贵州、河北、广东、四川等地销量比较高。

3.2 每月销量(瓶)

复制代码
def bar():
    bar = (
        Bar()
           .add_xaxis(x_data)
           .add_yaxis('', y_data, category_gap='30%')
           .set_global_opts(
                title_opts=opts.TitleOpts(
                    title='2-每月销量(瓶)',
                    subtitle=subtitle,
                    pos_top='1%',
                    pos_left="1%"
                ),
                visualmap_opts=opts.VisualMapOpts(
                    is_show=False,
                ),
                legend_opts=opts.LegendOpts(is_show=False),
           )
    )

3.3 男性女性购买数量占比

3.4 产品品种销量

复制代码
def pie1():
    pie1 = (
        Pie()
        .add(
            "",
            [list(z) for z in zip(x_data, y_data)],
            radius=["40%", "70%"],
            center=["50%", "50%"],
        )
        .set_colors(['#D32F2F','#1864ab','#FFCA28','#616161'])
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='4-产品品种销量',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%"
            ),
            legend_opts=opts.LegendOpts(is_show=False)
        )
    )
  • 红色包装 销量最高,占比达到约40% ,其次是金色包装 ,占比约24%

3.5 消费者年龄段销量

  • 从上榜电影类型分布上看,老年、中年、青年占比基本持平。

3.6 男性女性每月购买数量

3.7 销量前15的城市

复制代码
def bar1():
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis('', y_data,label_opts=opts.LabelOpts(position='right'))
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='7-销量前15的城市',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%",
            ),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
        .reversal_axis()
    )
  • 石家庄市 以762的销量排名第一,是排名第二昆明市、北京市的2.5倍左右。

3.8 评论词云

3.9 每月各地区销售额度

相关推荐
吴佳浩8 小时前
大模型量化部署终极指南:让700亿参数的AI跑进你的显卡
人工智能·python·gpu
diegoXie9 小时前
Python / R 向量顺序分割与跨步分割
开发语言·python·r语言
程序员小白条9 小时前
0经验如何找实习?
java·开发语言·数据结构·数据库·链表
七牛云行业应用9 小时前
解决OSError: No space left... 给DeepSeek Agent装上无限云硬盘
python·架构设计·七牛云·deepseek·agent开发
liulilittle9 小时前
C++ 浮点数封装。
linux·服务器·开发语言·前端·网络·数据库·c++
郭涤生9 小时前
QT 架构笔记
java·数据库·系统架构
韩立学长9 小时前
基于Springboot流浪动物领养网站0kh2iyb4(程序、源码、数据库、调试部署方案及开发环境)系统界面展示及获取方式置于文档末尾,可供参考。
数据库·spring boot·后端
DBA小马哥9 小时前
Oracle迁移到金仓数据库:完整迁移步骤与兼容性优化实战
数据库·oracle·国产化平替
BoBoZz199 小时前
CutWithScalars根据标量利用vtkContourFilter得到等值线
python·vtk·图形渲染·图形处理
@nengdoudou9 小时前
KStudio 客户端无法访问 KES 数据库服务器的指定 IP / 端口
数据库