【京东电商API接口】 | 京东某商品销量数据分析可视化

Python当打之年

当打之年,专注于各领域Python技术,量的积累,质的飞跃。后台回复:【可视化项目源码】可获取可视化系列文章源码和数据

本期将利用Python分析「京东商品数据接口」,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

Pandas --- 数据处理

Pyecharts --- 数据可视化

  1. 导入模块

    import jieba
    import pandas as pd
    from pyecharts.charts import Line
    from pyecharts.charts import Bar
    from pyecharts.charts import Pie
    from pyecharts.charts import Map
    from pyecharts.charts import WordCloud
    from pyecharts import options as opts
    import warnings
    warnings.filterwarnings('ignore')

  2. Pandas数据处理

2.1 读取数据

复制代码
df = pd.read_excel("./销量数据.xlsx")

2.2 查看数据信息

复制代码
df.info()

2.3 查看数据描述信息

复制代码
df.describe()
  1. Pyecharts数据可视化

3.1 销量(瓶)地图分布

复制代码
def map1():
    map1 = (
        Map()
        .add('',
             data,
             'china',
             is_map_symbol_show=False,
             label_opts=opts.LabelOpts(is_show=False)
            )
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='1-销量(瓶)地图分布',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%"
            ),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(
                pos_bottom='10%',
                pos_left='20%'
            ),

        )
    )
  • 云南、贵州、河北、广东、四川等地销量比较高。

3.2 每月销量(瓶)

复制代码
def bar():
    bar = (
        Bar()
           .add_xaxis(x_data)
           .add_yaxis('', y_data, category_gap='30%')
           .set_global_opts(
                title_opts=opts.TitleOpts(
                    title='2-每月销量(瓶)',
                    subtitle=subtitle,
                    pos_top='1%',
                    pos_left="1%"
                ),
                visualmap_opts=opts.VisualMapOpts(
                    is_show=False,
                ),
                legend_opts=opts.LegendOpts(is_show=False),
           )
    )

3.3 男性女性购买数量占比

3.4 产品品种销量

复制代码
def pie1():
    pie1 = (
        Pie()
        .add(
            "",
            [list(z) for z in zip(x_data, y_data)],
            radius=["40%", "70%"],
            center=["50%", "50%"],
        )
        .set_colors(['#D32F2F','#1864ab','#FFCA28','#616161'])
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='4-产品品种销量',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%"
            ),
            legend_opts=opts.LegendOpts(is_show=False)
        )
    )
  • 红色包装 销量最高,占比达到约40% ,其次是金色包装 ,占比约24%

3.5 消费者年龄段销量

  • 从上榜电影类型分布上看,老年、中年、青年占比基本持平。

3.6 男性女性每月购买数量

3.7 销量前15的城市

复制代码
def bar1():
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis('', y_data,label_opts=opts.LabelOpts(position='right'))
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='7-销量前15的城市',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%",
            ),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
        .reversal_axis()
    )
  • 石家庄市 以762的销量排名第一,是排名第二昆明市、北京市的2.5倍左右。

3.8 评论词云

3.9 每月各地区销售额度

相关推荐
猫头虎6 分钟前
如何排查并解决项目启动时报错Error encountered while processing: java.io.IOException: closed 的问题
java·开发语言·jvm·spring boot·python·开源·maven
YUJIANYUE25 分钟前
PHP纹路验证码
开发语言·php
Liue6123123130 分钟前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘
八零后琐话41 分钟前
干货:程序员必备性能分析工具——Arthas火焰图
开发语言·python
麦聪聊数据1 小时前
Web 原生架构如何重塑企业级数据库协作流?
数据库·sql·低代码·架构
未来之窗软件服务1 小时前
数据库优化提速(四)新加坡房产系统开发数据库表结构—仙盟创梦IDE
数据库·数据库优化·计算机软考
青春不朽5122 小时前
Scrapy框架入门指南
python·scrapy
Lun3866buzha2 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
MZ_ZXD0012 小时前
springboot旅游信息管理系统-计算机毕业设计源码21675
java·c++·vue.js·spring boot·python·django·php