【京东电商API接口】 | 京东某商品销量数据分析可视化

Python当打之年

当打之年,专注于各领域Python技术,量的积累,质的飞跃。后台回复:【可视化项目源码】可获取可视化系列文章源码和数据

本期将利用Python分析「京东商品数据接口」,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

Pandas --- 数据处理

Pyecharts --- 数据可视化

  1. 导入模块

    import jieba
    import pandas as pd
    from pyecharts.charts import Line
    from pyecharts.charts import Bar
    from pyecharts.charts import Pie
    from pyecharts.charts import Map
    from pyecharts.charts import WordCloud
    from pyecharts import options as opts
    import warnings
    warnings.filterwarnings('ignore')

  2. Pandas数据处理

2.1 读取数据

复制代码
df = pd.read_excel("./销量数据.xlsx")

2.2 查看数据信息

复制代码
df.info()

2.3 查看数据描述信息

复制代码
df.describe()
  1. Pyecharts数据可视化

3.1 销量(瓶)地图分布

复制代码
def map1():
    map1 = (
        Map()
        .add('',
             data,
             'china',
             is_map_symbol_show=False,
             label_opts=opts.LabelOpts(is_show=False)
            )
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='1-销量(瓶)地图分布',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%"
            ),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(
                pos_bottom='10%',
                pos_left='20%'
            ),

        )
    )
  • 云南、贵州、河北、广东、四川等地销量比较高。

3.2 每月销量(瓶)

复制代码
def bar():
    bar = (
        Bar()
           .add_xaxis(x_data)
           .add_yaxis('', y_data, category_gap='30%')
           .set_global_opts(
                title_opts=opts.TitleOpts(
                    title='2-每月销量(瓶)',
                    subtitle=subtitle,
                    pos_top='1%',
                    pos_left="1%"
                ),
                visualmap_opts=opts.VisualMapOpts(
                    is_show=False,
                ),
                legend_opts=opts.LegendOpts(is_show=False),
           )
    )

3.3 男性女性购买数量占比

3.4 产品品种销量

复制代码
def pie1():
    pie1 = (
        Pie()
        .add(
            "",
            [list(z) for z in zip(x_data, y_data)],
            radius=["40%", "70%"],
            center=["50%", "50%"],
        )
        .set_colors(['#D32F2F','#1864ab','#FFCA28','#616161'])
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='4-产品品种销量',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%"
            ),
            legend_opts=opts.LegendOpts(is_show=False)
        )
    )
  • 红色包装 销量最高,占比达到约40% ,其次是金色包装 ,占比约24%

3.5 消费者年龄段销量

  • 从上榜电影类型分布上看,老年、中年、青年占比基本持平。

3.6 男性女性每月购买数量

3.7 销量前15的城市

复制代码
def bar1():
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis('', y_data,label_opts=opts.LabelOpts(position='right'))
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='7-销量前15的城市',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%",
            ),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
        .reversal_axis()
    )
  • 石家庄市 以762的销量排名第一,是排名第二昆明市、北京市的2.5倍左右。

3.8 评论词云

3.9 每月各地区销售额度

相关推荐
CryptoRzz3 小时前
越南k线历史数据、IPO新股股票数据接口文档
java·数据库·后端·python·区块链
chenchihwen4 小时前
深度解析RAG系统中的PDF解析模块:Docling集成与并行处理实践
python·算法·pdf
学Java的bb4 小时前
MybatisPlus
java·开发语言·数据库
重生之我要当java大帝4 小时前
java微服务-尚医通-编写医院设置接口上
java·数据库·微服务
MasonYyp4 小时前
简单使用Marker
python·语言模型
Mu.3874 小时前
初始Spring
java·数据库·spring
葡萄城技术团队4 小时前
突破Excel局限!SpreadJS让电子表格“活”起来
java·数据库·excel
J总裁的小芒果4 小时前
SQL Server 报错 当 IDENTITY_INSERT 设置为 OFF 时,不能为表 ‘ORDER_BTN‘ 中的标识列插入显式值
数据库
吹个口哨写代码4 小时前
处理文本编辑器存的json格式报错问题,对编辑器存的字段进行转换处理,再通过json返回
java·编辑器·json
神的孩子都在歌唱4 小时前
PostgreSQL 向量检索方式(pgvector)
数据库·人工智能·postgresql