【京东电商API接口】 | 京东某商品销量数据分析可视化

Python当打之年

当打之年,专注于各领域Python技术,量的积累,质的飞跃。后台回复:【可视化项目源码】可获取可视化系列文章源码和数据

本期将利用Python分析「京东商品数据接口」,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

Pandas --- 数据处理

Pyecharts --- 数据可视化

  1. 导入模块

    import jieba
    import pandas as pd
    from pyecharts.charts import Line
    from pyecharts.charts import Bar
    from pyecharts.charts import Pie
    from pyecharts.charts import Map
    from pyecharts.charts import WordCloud
    from pyecharts import options as opts
    import warnings
    warnings.filterwarnings('ignore')

  2. Pandas数据处理

2.1 读取数据

复制代码
df = pd.read_excel("./销量数据.xlsx")

2.2 查看数据信息

复制代码
df.info()

2.3 查看数据描述信息

复制代码
df.describe()
  1. Pyecharts数据可视化

3.1 销量(瓶)地图分布

复制代码
def map1():
    map1 = (
        Map()
        .add('',
             data,
             'china',
             is_map_symbol_show=False,
             label_opts=opts.LabelOpts(is_show=False)
            )
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='1-销量(瓶)地图分布',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%"
            ),
            legend_opts=opts.LegendOpts(is_show=False),
            visualmap_opts=opts.VisualMapOpts(
                pos_bottom='10%',
                pos_left='20%'
            ),

        )
    )
  • 云南、贵州、河北、广东、四川等地销量比较高。

3.2 每月销量(瓶)

复制代码
def bar():
    bar = (
        Bar()
           .add_xaxis(x_data)
           .add_yaxis('', y_data, category_gap='30%')
           .set_global_opts(
                title_opts=opts.TitleOpts(
                    title='2-每月销量(瓶)',
                    subtitle=subtitle,
                    pos_top='1%',
                    pos_left="1%"
                ),
                visualmap_opts=opts.VisualMapOpts(
                    is_show=False,
                ),
                legend_opts=opts.LegendOpts(is_show=False),
           )
    )

3.3 男性女性购买数量占比

3.4 产品品种销量

复制代码
def pie1():
    pie1 = (
        Pie()
        .add(
            "",
            [list(z) for z in zip(x_data, y_data)],
            radius=["40%", "70%"],
            center=["50%", "50%"],
        )
        .set_colors(['#D32F2F','#1864ab','#FFCA28','#616161'])
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='4-产品品种销量',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%"
            ),
            legend_opts=opts.LegendOpts(is_show=False)
        )
    )
  • 红色包装 销量最高,占比达到约40% ,其次是金色包装 ,占比约24%

3.5 消费者年龄段销量

  • 从上榜电影类型分布上看,老年、中年、青年占比基本持平。

3.6 男性女性每月购买数量

3.7 销量前15的城市

复制代码
def bar1():
    bar = (
        Bar()
        .add_xaxis(x_data)
        .add_yaxis('', y_data,label_opts=opts.LabelOpts(position='right'))
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='7-销量前15的城市',
                subtitle=subtitle,
                pos_top='1%',
                pos_left="1%",
            ),
            visualmap_opts=opts.VisualMapOpts(
                is_show=False,
            ),
            legend_opts=opts.LegendOpts(is_show=False),
        )
        .reversal_axis()
    )
  • 石家庄市 以762的销量排名第一,是排名第二昆明市、北京市的2.5倍左右。

3.8 评论词云

3.9 每月各地区销售额度

相关推荐
好好学习啊天天向上9 小时前
C盘容量不够,python , pip,安装包的位置
linux·python·pip
时见先生9 小时前
Python库和conda搭建虚拟环境
开发语言·人工智能·python·自然语言处理·conda
二十雨辰9 小时前
[python]-循环语句
服务器·python
a努力。9 小时前
国家电网Java面试被问:混沌工程在分布式系统中的应用
java·开发语言·数据库·git·mysql·面试·职场和发展
Yvonne爱编码9 小时前
Java 四大内部类全解析:从设计本质到实战应用
java·开发语言·python
wqwqweee9 小时前
Flutter for OpenHarmony 看书管理记录App实战:搜索功能实现
开发语言·javascript·python·flutter·harmonyos
li_wen019 小时前
文件系统(八):Linux JFFS2文件系统工作原理、优势与局限
大数据·linux·数据库·文件系统·jffs2
wWYy.11 小时前
详解redis(16):缓存击穿
数据库·redis·缓存
JosieBook11 小时前
【数据库】Oracle迁移至KingbaseES:挑战、策略与最佳实践
数据库·oracle
-To be number.wan11 小时前
Python数据分析:numpy数值计算基础
开发语言·python·数据分析