Llama 3 模型上下文长度扩展至1048K

AI苏妲己:

Gradient AI 近日宣布,通过其创新的渐进式训练方法,成功将 Llama 3 系列模型的上下文长度扩展至超过100万令牌。

Llama 3 模型最初设计用于处理8000个令牌的上下文长度,这大约相当于6000字或10页文档。为了适应更长的上下文使用场景,Gradient AI 采用了渐进式训练方法, 使模型逐步适应更长的文本序列。 这种训练策略不仅提高了模型的稳定性和效率,还允许模型在一个任务中考虑更多的信息,从而提高了理解和生成文本的精确度和相关性。

在技术实现上,Gradient AI 采用了多项创新技术,包括 RingAttention 库和 EasyContext Blockwise 技术,这些技术优化了注意力机制的计算,使得模型能够高效地处理长序列。此外,通过 NTK-aware 插值和缩放法则,模型的参数得到了优化,以适应不同长度的文本处理。

在训练过程中,Gradient AI 使用了大规模图像-文本配对数据集和纯文本数据集,并通过数据增强策略来提高模型的适应性和鲁棒性。模型的训练在 Crusoe Energy 的高性能 L40S 集群上进行,该集群配备了先进的 GPU 和高速网络连接,以支持大规模并行处理。

这一技术突破为长文本处理提供了新的解决方案,预示着人工智能在未来处理复杂信息任务中将发挥更大的作用。

Llama-3-70B-Instruct-Gradient-1048k:

https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k

相关推荐
Jerry Lau1 天前
大模型-本地化部署调用--基于ollama+openWebUI+springBoot
java·spring boot·后端·llama
斯多葛的信徒1 天前
看看你的电脑可以跑 AI 模型吗?
人工智能·语言模型·电脑·llama
AGI学习社1 天前
2024中国排名前十AI大模型进展、应用案例与发展趋势
linux·服务器·人工智能·华为·llama
周杰伦_Jay2 天前
Ollama能本地部署Llama 3等大模型的原因解析(ollama核心架构、技术特性、实际应用)
数据结构·人工智能·深度学习·架构·transformer·llama
Allen200004 天前
wow-agent---task2使用llama-index创建Agent
人工智能·llama
不是吧这都有重名4 天前
[Datawheel学习]用Llama-index创建Agent、数据库对话Agent和RAG接入Agent
数据库·学习·llama
RockWang.4 天前
【llama_factory】qwen2_vl训练与批量推理
llama·qwen2-vl
beyond阿亮6 天前
llama.cpp编译和运行 API调用
c++·人工智能·ai·llama
玄明Hanko7 天前
小模型干大事情,基于LLaMA-Factory+Lora入门级微调开源AI模型
人工智能·llama
qq_3517547812 天前
通过LlaMA-Factory导出的模型部署到Ollama
llama