Llama 3 模型上下文长度扩展至1048K

AI苏妲己:

Gradient AI 近日宣布,通过其创新的渐进式训练方法,成功将 Llama 3 系列模型的上下文长度扩展至超过100万令牌。

Llama 3 模型最初设计用于处理8000个令牌的上下文长度,这大约相当于6000字或10页文档。为了适应更长的上下文使用场景,Gradient AI 采用了渐进式训练方法, 使模型逐步适应更长的文本序列。 这种训练策略不仅提高了模型的稳定性和效率,还允许模型在一个任务中考虑更多的信息,从而提高了理解和生成文本的精确度和相关性。

在技术实现上,Gradient AI 采用了多项创新技术,包括 RingAttention 库和 EasyContext Blockwise 技术,这些技术优化了注意力机制的计算,使得模型能够高效地处理长序列。此外,通过 NTK-aware 插值和缩放法则,模型的参数得到了优化,以适应不同长度的文本处理。

在训练过程中,Gradient AI 使用了大规模图像-文本配对数据集和纯文本数据集,并通过数据增强策略来提高模型的适应性和鲁棒性。模型的训练在 Crusoe Energy 的高性能 L40S 集群上进行,该集群配备了先进的 GPU 和高速网络连接,以支持大规模并行处理。

这一技术突破为长文本处理提供了新的解决方案,预示着人工智能在未来处理复杂信息任务中将发挥更大的作用。

Llama-3-70B-Instruct-Gradient-1048k:

https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k

相关推荐
go&Python18 小时前
检索模型与RAG
开发语言·python·llama
修一呀2 天前
[大模型微调]基于llama_factory用 LoRA 高效微调 Qwen3 医疗大模型:从原理到实现
人工智能·llama·大模型微调
liliangcsdn2 天前
基于llama.cpp的量化版reranker模型调用示例
人工智能·数据分析·embedding·llama·rerank
gptplusplus2 天前
Meta AI 剧变:汪滔挥刀重组,Llama 开源路线告急,超级智能梦碎还是重生?
人工智能·开源·llama
AI大模型7 天前
基于 Docker 的 LLaMA-Factory 全流程部署指南
docker·llm·llama
m0_6038887113 天前
LLaMA-Adapter V2 Parameter-Efficient Visual Instruction Model
人工智能·深度学习·ai·llama·论文速览
三千院本院17 天前
LlaMA_Factory实战微调VL大模型
llama
爱分享的飘哥22 天前
第四十六章:AI的“瞬时记忆”与“高效聚焦”:llama.cpp的KV Cache与Attention机制
llama·llama.cpp·kv cache·attention优化·llm cpu推理·量化attention·gguf推理
psyq23 天前
LLaMA Factory 角色扮演模型微调实践记录
人工智能·llama
liliangcsdn1 个月前
mac测试ollama llamaindex
数据仓库·人工智能·prompt·llama