Llama 3 模型上下文长度扩展至1048K

AI苏妲己:

Gradient AI 近日宣布,通过其创新的渐进式训练方法,成功将 Llama 3 系列模型的上下文长度扩展至超过100万令牌。

Llama 3 模型最初设计用于处理8000个令牌的上下文长度,这大约相当于6000字或10页文档。为了适应更长的上下文使用场景,Gradient AI 采用了渐进式训练方法, 使模型逐步适应更长的文本序列。 这种训练策略不仅提高了模型的稳定性和效率,还允许模型在一个任务中考虑更多的信息,从而提高了理解和生成文本的精确度和相关性。

在技术实现上,Gradient AI 采用了多项创新技术,包括 RingAttention 库和 EasyContext Blockwise 技术,这些技术优化了注意力机制的计算,使得模型能够高效地处理长序列。此外,通过 NTK-aware 插值和缩放法则,模型的参数得到了优化,以适应不同长度的文本处理。

在训练过程中,Gradient AI 使用了大规模图像-文本配对数据集和纯文本数据集,并通过数据增强策略来提高模型的适应性和鲁棒性。模型的训练在 Crusoe Energy 的高性能 L40S 集群上进行,该集群配备了先进的 GPU 和高速网络连接,以支持大规模并行处理。

这一技术突破为长文本处理提供了新的解决方案,预示着人工智能在未来处理复杂信息任务中将发挥更大的作用。

Llama-3-70B-Instruct-Gradient-1048k:

https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k

相关推荐
橘子在努力2 小时前
【橘子大模型】关于PromptTemplate
python·ai·llama
Chaos_Wang_1 天前
NLP高频面试题(三十)——LLama系列模型介绍,包括LLama LLama2和LLama3
人工智能·自然语言处理·llama
艾鹤1 天前
ollama安装与使用
人工智能·llama
清易2 天前
windows大模型llamafactory微调
llama
漠北尘-Gavin3 天前
【Python3.12.9安装llama-cpp-python遇到编译报错问题解决】
python·llama
爱听歌的周童鞋3 天前
理解llama.cpp如何进行LLM推理
llm·llama·llama.cpp·inference
溯源0063 天前
vscode调试python(transformers库的llama为例)
vscode·python·llama
Flying`4 天前
LLaMA-Factory微调实操记录
llama
张飞飞飞飞飞4 天前
通过Llama-Factory对Deepseek-r1:1.5b进行微调
llama
喜欢吃豆5 天前
LLaMA-Factory使用实战
人工智能·大模型·json·llama