Llama 3 模型上下文长度扩展至1048K

AI苏妲己:

Gradient AI 近日宣布,通过其创新的渐进式训练方法,成功将 Llama 3 系列模型的上下文长度扩展至超过100万令牌。

Llama 3 模型最初设计用于处理8000个令牌的上下文长度,这大约相当于6000字或10页文档。为了适应更长的上下文使用场景,Gradient AI 采用了渐进式训练方法, 使模型逐步适应更长的文本序列。 这种训练策略不仅提高了模型的稳定性和效率,还允许模型在一个任务中考虑更多的信息,从而提高了理解和生成文本的精确度和相关性。

在技术实现上,Gradient AI 采用了多项创新技术,包括 RingAttention 库和 EasyContext Blockwise 技术,这些技术优化了注意力机制的计算,使得模型能够高效地处理长序列。此外,通过 NTK-aware 插值和缩放法则,模型的参数得到了优化,以适应不同长度的文本处理。

在训练过程中,Gradient AI 使用了大规模图像-文本配对数据集和纯文本数据集,并通过数据增强策略来提高模型的适应性和鲁棒性。模型的训练在 Crusoe Energy 的高性能 L40S 集群上进行,该集群配备了先进的 GPU 和高速网络连接,以支持大规模并行处理。

这一技术突破为长文本处理提供了新的解决方案,预示着人工智能在未来处理复杂信息任务中将发挥更大的作用。

Llama-3-70B-Instruct-Gradient-1048k:

https://huggingface.co/gradientai/Llama-3-70B-Instruct-Gradient-1048k

相关推荐
快撑死的鱼19 小时前
Llama-factory 详细学习笔记:第六章:DPO (直接偏好优化) 实战 (难点)
笔记·学习·llama
一见已难忘19 小时前
昇腾加持下的Llama 3.2:开源大模型推理性能1B英文原版与3B中文微调模型实测对比
人工智能·开源·llama·gitcode·昇腾
被制作时长两年半的个人练习生1 天前
使用rvv优化rms_norm
linux·llama·risc-v
LiYingL3 天前
OctoThinker 通过改进 Llama 来支持强化学习,展示了中间学习的威力
人工智能·学习·llama
范男5 天前
Qwen3-VL + LLama-Factory进行针对Grounding任务LoRA微调
人工智能·深度学习·计算机视觉·transformer·llama
忘记5785 天前
下载llama factory
llama
路边草随风5 天前
llama_index简单使用
人工智能·python·llama
王威振的csdn6 天前
法律大模型微调:基于 LLaMA-Factory 的指令微调方案
llama
JoannaJuanCV6 天前
大模型训练:LLaMA-Factory快速上手
llama
java_logo6 天前
LANGFUSE Docker 容器化部署指南
运维·docker·云原生·容器·eureka·llama