【深度学习】实验3 特征处理

特征处理

python 版本 3.7

scikit-learn 版本 1.0.2

1.标准化

py 复制代码
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from matplotlib import gridspec
import numpy as np
import matplotlib.pyplot as plt
cps = np.random.random_integers(0, 100, (100, 2))
 
ss = StandardScaler()
std_cps = ss.fit_transform(cps)
 
gs = gridspec.GridSpec(5,5)
fig = plt.figure()
ax1 = fig.add_subplot(gs[0:2, 1:4])
ax2 = fig.add_subplot(gs[3:5, 1:4])
 
ax1.scatter(cps[:, 0], cps[:, 1])
ax2.scatter(std_cps[:, 0], std_cps[:, 1])
 
plt.show()

2.归一化

python 复制代码
from sklearn.preprocessing import MinMaxScaler
import numpy as np

data = np.random.uniform(0, 100, 10)[:, np.newaxis]
mm = MinMaxScaler()
mm_data = mm.fit_transform(data)
origin_data = mm.inverse_transform(mm_data)
print('data is ',data)
print('after Min Max ',mm_data)
print('origin data is ',origin_data)

3.正则化

python 复制代码
X = [[1, -1, 2],
     [2, 0, 0],
     [0, 1, -1]]

# 使用L2正则化
from sklearn.preprocessing import normalize
l2 = normalize(X, norm='l2')
print('l2:', l2)

# 使用L1正则化
from sklearn.preprocessing import Normalizer
normalizerl1 = Normalizer(norm='l1')
l1 = normalizerl1.fit_transform(X)
print('l1:', l1)
相关推荐
wfeqhfxz25887822 分钟前
柿子与桃子目标检测识别-YOLO11-seg-HGNetV2改进实现
人工智能·目标检测·计算机视觉
ZCXZ12385296a9 分钟前
基于YOLOv10n-LSDECD的多类别交通目标检测系统_行人_自行车及交通信号灯识别
人工智能·yolo·目标检测
AI科技星19 分钟前
统一场论理论下理解物体在不同运动状态的本质
人工智能·线性代数·算法·机器学习·概率论
乾元23 分钟前
数据为王——安全数据集的清洗与特征工程
大数据·网络·人工智能·安全·web安全·机器学习·架构
wangmengxxw26 分钟前
SpringAI-结构化输出API
java·人工智能·springai
国际期刊-秋秋28 分钟前
[ACM] 2026 年人工智能系统、区块链与数字经济国际学术会议(DEAI 2026)
人工智能·国际会议·会议投稿
2501_9402778029 分钟前
告别碎片化集成:使用 MCP 标准化重构企业内部遗留 API,构建统一的 AI 原生接口中心
人工智能·重构
萤丰信息33 分钟前
智慧园区:科技赋能的未来产业生态新载体
大数据·运维·人工智能·科技·智慧园区
ASD123asfadxv39 分钟前
【医疗影像检测】VFNet模型在医疗器械目标检测中的应用与优化
人工智能·目标检测·计算机视觉
小真zzz41 分钟前
2025-2026年AI PPT工具排行榜:ChatPPT的全面领先与竞品格局解析
人工智能·ai·powerpoint·ppt·aippt