【深度学习】实验3 特征处理

特征处理

python 版本 3.7

scikit-learn 版本 1.0.2

1.标准化

py 复制代码
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from matplotlib import gridspec
import numpy as np
import matplotlib.pyplot as plt
cps = np.random.random_integers(0, 100, (100, 2))
 
ss = StandardScaler()
std_cps = ss.fit_transform(cps)
 
gs = gridspec.GridSpec(5,5)
fig = plt.figure()
ax1 = fig.add_subplot(gs[0:2, 1:4])
ax2 = fig.add_subplot(gs[3:5, 1:4])
 
ax1.scatter(cps[:, 0], cps[:, 1])
ax2.scatter(std_cps[:, 0], std_cps[:, 1])
 
plt.show()

2.归一化

python 复制代码
from sklearn.preprocessing import MinMaxScaler
import numpy as np

data = np.random.uniform(0, 100, 10)[:, np.newaxis]
mm = MinMaxScaler()
mm_data = mm.fit_transform(data)
origin_data = mm.inverse_transform(mm_data)
print('data is ',data)
print('after Min Max ',mm_data)
print('origin data is ',origin_data)

3.正则化

python 复制代码
X = [[1, -1, 2],
     [2, 0, 0],
     [0, 1, -1]]

# 使用L2正则化
from sklearn.preprocessing import normalize
l2 = normalize(X, norm='l2')
print('l2:', l2)

# 使用L1正则化
from sklearn.preprocessing import Normalizer
normalizerl1 = Normalizer(norm='l1')
l1 = normalizerl1.fit_transform(X)
print('l1:', l1)
相关推荐
LaughingZhu5 小时前
Product Hunt 每日热榜 | 2026-02-14
数据库·人工智能·经验分享·神经网络·搜索引擎·chatgpt
大模型探员5 小时前
告别答非所问!深度解析文档切分如何决定RAG的搜索上限
人工智能
民乐团扒谱机5 小时前
【读论文】深度学习中的卷积算术指南 A guide to convolution arithmetic for deep learning
人工智能·深度学习·神经网络·机器学习·cnn·卷积神经网络·图像识别
byzh_rc5 小时前
[深度学习网络从入门到入土] 拓展 - Inception
网络·人工智能·深度学习
阿里巴巴淘系技术团队官网博客5 小时前
从应用架构的视角看退小宝AI助手落地现状
人工智能·架构
寻星探路5 小时前
【JVM 终极通关指南】万字长文从底层到实战全维度深度拆解 Java 虚拟机
java·开发语言·jvm·人工智能·python·算法·ai
Elastic 中国社区官方博客5 小时前
DevRel 通讯 — 2026 年 2 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·jina
一个天蝎座 白勺 程序猿5 小时前
飞算JavaAI:从情绪价值到代码革命,智能合并项目与定制化开发新范式
人工智能·ai·自动化·javaai
田里的水稻6 小时前
FA_融合和滤波(FF)-联邦滤波(FKF)
人工智能·算法·数学建模·机器人·自动驾驶
摘星编程6 小时前
解析CANN ops-transformer的FlashAttention算子:注意力机制的内存优化
人工智能·深度学习·transformer