【深度学习】实验3 特征处理

特征处理

python 版本 3.7

scikit-learn 版本 1.0.2

1.标准化

py 复制代码
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from matplotlib import gridspec
import numpy as np
import matplotlib.pyplot as plt
cps = np.random.random_integers(0, 100, (100, 2))
 
ss = StandardScaler()
std_cps = ss.fit_transform(cps)
 
gs = gridspec.GridSpec(5,5)
fig = plt.figure()
ax1 = fig.add_subplot(gs[0:2, 1:4])
ax2 = fig.add_subplot(gs[3:5, 1:4])
 
ax1.scatter(cps[:, 0], cps[:, 1])
ax2.scatter(std_cps[:, 0], std_cps[:, 1])
 
plt.show()

2.归一化

python 复制代码
from sklearn.preprocessing import MinMaxScaler
import numpy as np

data = np.random.uniform(0, 100, 10)[:, np.newaxis]
mm = MinMaxScaler()
mm_data = mm.fit_transform(data)
origin_data = mm.inverse_transform(mm_data)
print('data is ',data)
print('after Min Max ',mm_data)
print('origin data is ',origin_data)

3.正则化

python 复制代码
X = [[1, -1, 2],
     [2, 0, 0],
     [0, 1, -1]]

# 使用L2正则化
from sklearn.preprocessing import normalize
l2 = normalize(X, norm='l2')
print('l2:', l2)

# 使用L1正则化
from sklearn.preprocessing import Normalizer
normalizerl1 = Normalizer(norm='l1')
l1 = normalizerl1.fit_transform(X)
print('l1:', l1)
相关推荐
Techblog of HaoWANG4 分钟前
目标检测与跟踪 (8)- 机器人视觉窄带线激光缝隙检测系统开发
人工智能·opencv·目标检测·机器人·视觉检测·控制
laplace012310 分钟前
Claude Skills 笔记整理
人工智能·笔记·agent·rag·skills
2501_9414185512 分钟前
【计算机视觉】基于YOLO11-P6的保龄球检测与识别系统
人工智能·计算机视觉
码农三叔24 分钟前
(8-3)传感器系统与信息获取:多传感器同步与传输
人工智能·机器人·人形机器人
人工小情绪32 分钟前
Clawbot (OpenClaw)简介
人工智能
童话名剑1 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
2501_933329551 小时前
品牌公关AI化实践:Infoseek舆情系统技术架构解析
人工智能·自然语言处理
咋吃都不胖lyh1 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
xiucai_cs1 小时前
AI RAG 本地知识库实战
人工智能·知识库·dify·rag·ollama
zhangfeng11331 小时前
大模型微调时 Firefly(流萤)和 LlamaFactory(LLaMA Factory)这两个工具/框架之间做出合适的选择
人工智能·llama