【深度学习】实验3 特征处理

特征处理

python 版本 3.7

scikit-learn 版本 1.0.2

1.标准化

py 复制代码
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from matplotlib import gridspec
import numpy as np
import matplotlib.pyplot as plt
cps = np.random.random_integers(0, 100, (100, 2))
 
ss = StandardScaler()
std_cps = ss.fit_transform(cps)
 
gs = gridspec.GridSpec(5,5)
fig = plt.figure()
ax1 = fig.add_subplot(gs[0:2, 1:4])
ax2 = fig.add_subplot(gs[3:5, 1:4])
 
ax1.scatter(cps[:, 0], cps[:, 1])
ax2.scatter(std_cps[:, 0], std_cps[:, 1])
 
plt.show()

2.归一化

python 复制代码
from sklearn.preprocessing import MinMaxScaler
import numpy as np

data = np.random.uniform(0, 100, 10)[:, np.newaxis]
mm = MinMaxScaler()
mm_data = mm.fit_transform(data)
origin_data = mm.inverse_transform(mm_data)
print('data is ',data)
print('after Min Max ',mm_data)
print('origin data is ',origin_data)

3.正则化

python 复制代码
X = [[1, -1, 2],
     [2, 0, 0],
     [0, 1, -1]]

# 使用L2正则化
from sklearn.preprocessing import normalize
l2 = normalize(X, norm='l2')
print('l2:', l2)

# 使用L1正则化
from sklearn.preprocessing import Normalizer
normalizerl1 = Normalizer(norm='l1')
l1 = normalizerl1.fit_transform(X)
print('l1:', l1)
相关推荐
hit56实验室几秒前
如何调整vad参数
人工智能
退休钓鱼选手6 分钟前
BehaviorTree行为树-机器人及自动驾驶
人工智能·自动驾驶
xiao5kou4chang6kai46 分钟前
贯通LLM应用→数据分析→自动化编程→文献及知识管理→科研写作与绘图→构建本地LLM、Agent→多模型圆桌会议→N8N自动化工作流深度应用
人工智能·自动化·llm·科研绘图·n8n
啊巴矲9 分钟前
小白从零开始勇闯人工智能:机器学习初级篇(TF-IDF)
人工智能·机器学习·tf-idf
dulu~dulu11 分钟前
机器学习---计算题总结
人工智能·机器学习·支持向量机·集成学习·贝叶斯分类器
Das111 分钟前
【机器学习】03_贝叶斯决策
人工智能·机器学习
迷你可可小生13 分钟前
常见神经网络模块
人工智能·深度学习
大厂技术总监下海15 分钟前
你的个人AI工作站已就绪:Ollama开源框架,支持多模态、可定制、一键部署
人工智能·机器学习·开源
行业探路者18 分钟前
如何利用二维码提升产品画册的制作与传播?
大数据·人工智能·安全·二维码·设备巡检
安达发公司22 分钟前
安达发|给“工业心脏”装上新大脑:APS生产排产的硬核智慧
大数据·人工智能·aps高级排程·aps排程软件·生产计划排单软件·aps生产排产