【深度学习】实验3 特征处理

特征处理

python 版本 3.7

scikit-learn 版本 1.0.2

1.标准化

py 复制代码
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from matplotlib import gridspec
import numpy as np
import matplotlib.pyplot as plt
cps = np.random.random_integers(0, 100, (100, 2))
 
ss = StandardScaler()
std_cps = ss.fit_transform(cps)
 
gs = gridspec.GridSpec(5,5)
fig = plt.figure()
ax1 = fig.add_subplot(gs[0:2, 1:4])
ax2 = fig.add_subplot(gs[3:5, 1:4])
 
ax1.scatter(cps[:, 0], cps[:, 1])
ax2.scatter(std_cps[:, 0], std_cps[:, 1])
 
plt.show()

2.归一化

python 复制代码
from sklearn.preprocessing import MinMaxScaler
import numpy as np

data = np.random.uniform(0, 100, 10)[:, np.newaxis]
mm = MinMaxScaler()
mm_data = mm.fit_transform(data)
origin_data = mm.inverse_transform(mm_data)
print('data is ',data)
print('after Min Max ',mm_data)
print('origin data is ',origin_data)

3.正则化

python 复制代码
X = [[1, -1, 2],
     [2, 0, 0],
     [0, 1, -1]]

# 使用L2正则化
from sklearn.preprocessing import normalize
l2 = normalize(X, norm='l2')
print('l2:', l2)

# 使用L1正则化
from sklearn.preprocessing import Normalizer
normalizerl1 = Normalizer(norm='l1')
l1 = normalizerl1.fit_transform(X)
print('l1:', l1)
相关推荐
GISer_Jing2 分钟前
AI学习资源总结:免费开放,入门至深入,持续更新
人工智能·学习·设计模式·prompt·aigc
聊聊科技4 分钟前
音乐平台批量demo更新频繁,AI代唱demo软件助音乐人快速响应
人工智能
IT_陈寒5 分钟前
SpringBoot 3.2实战:5个性能优化技巧让你的应用提速50%
前端·人工智能·后端
Ydwlcloud5 分钟前
个人博客与内容站部署在AWS:2026年的理性选择与更优策略
大数据·服务器·人工智能·云计算·aws
AAD5558889911 分钟前
黄稻螟害虫检测基于Faster-RCNN_R50-Caffe-C4_MS-1x_COCO模型创新实现
人工智能·深度学习·caffe
知乎的哥廷根数学学派13 分钟前
基于注意力机制的多尺度脉冲神经网络旋转机械故障诊断(西储大学轴承数据,Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习
PeterClerk14 分钟前
计算机视觉(CV)期刊(按 CCF 推荐目录 A/B/C + 交叉方向整理
论文阅读·图像处理·人工智能·深度学习·搜索引擎·计算机视觉·计算机期刊
aitoolhub17 分钟前
PPT在线制作:如何用模板提升内容输出效率
人工智能·aigc·powerpoint·ppt·视觉传达
DJ.马20 分钟前
如何在环境里同时配置tensorflow和pytorch共存
人工智能·pytorch·tensorflow
星期五不见面26 分钟前
机器人学习!(二)ROS-基于Gazebo项目-YOLO(3)2026/01/13
人工智能·学习·机器人