深度学习:光流估计新范式

0.概述

在这篇文章中,我们将讨论两种基于深度学习的光流运动估计方法。FlowNet是第一个用于计算光流的CNN方法,RAFT是当前最先进的估计光流的方法。我们还将看到如何使用作者提供的经过训练的模型来使用PyTorch对新数据进行推断。

1. FlowNet

FlowNet architecture 于2015年推出,是第一个预测光流的CNN方法。作者受到CNN架构在分类、深度估计和语义分割任务中的成功结果的启发。随着深度学习方法和CNN成为解决许多计算机视觉任务的有利策略,作者又引入了两个用于光流估计的神经网络。

1.1 Architecture

FlowNetS和FlowNetCorr架构都包含类似于U-Net架构的编码器和解码器部分。编码器从两个连续的图像中提取特征,而解码器升级编码器特征图并获得最终的光流预测。让我们更深入地了解一下FlowNetS和FlowNetCorr网络。

1.2 FlowNetS encoder

流网络(也称为FlowNetSimple)中的输入数据是两个连续帧的串联。这两幅图像被放置到6通道张量中,其中前三个通道属于第一幅图像,其余三个通道属于第二幅图像。编码器部分由几个卷积层组成,后面是激活函数。这种架构允许网络自己决定如何处理两个堆叠的图像,并为以下结果细化提供特征图。

2.

相关推荐
勤奋的小笼包3 小时前
论文阅读笔记:《Dataset Distillation by Matching Training Trajectories》
论文阅读·人工智能·笔记
max5006003 小时前
基于深度学习的污水新冠RNA测序数据分析系统
开发语言·人工智能·python·深度学习·神经网络
Sunhen_Qiletian3 小时前
计算机视觉前言-----OpenCV库介绍与计算机视觉入门准备
人工智能·opencv·计算机视觉
数字游名Tomda4 小时前
OpenAI推出开源GPT-oss-120b与GPT-oss-20b突破性大模型,支持商用与灵活部署!
人工智能·经验分享·gpt
max5006004 小时前
深度学习的视觉惯性里程计(VIO)算法优化实践
人工智能·深度学习·算法
坐在地上想成仙4 小时前
计算机视觉(3)深度学习模型部署平台技术选型与全栈实践指南
人工智能·深度学习
小王爱学人工智能6 小时前
5分钟了解OpenCV
人工智能·opencv·计算机视觉
GetcharZp6 小时前
让 AI 更聪明:Prompt 的秘密武器 + 30 个实用模板
人工智能
无规则ai6 小时前
动手学深度学习(pytorch版):第一章节——引言
人工智能·pytorch·深度学习·算法·机器学习
格林威7 小时前
工业相机使用 YOLOv8深度学习模型 及 OpenCV 实现目标检测简单介绍
人工智能·深度学习·数码相机·opencv·yolo·目标检测·计算机视觉