数据挖掘(三)特征构造

前言

基于国防科技大学 丁兆云老师的《数据挖掘》课程
数据挖掘
数据挖掘(一)数据类型与统计
数据挖掘(二)数据预处理

3、特征构造
3.1 基本特征构造方法:

3.1.1 运用已有知识直接构造:

一般是根据原有特征挖掘新的更有用的特征,比如给出了质量和体积,则可以构造出密度特征

3.1.2 其它常见技巧:

常见构造特征技巧及运用场景:

3.1.3 时间类型数据特征构造:

时间特征(Time-Based Features):

如果数据中包含时间信息,可以从中提取各种时间特征,如年、月、日、季节、工作日、周末等。这些时间特征可以帮助模型捕捉到时间的周期性和趋势性,对于时间序列数据或具有时间相关性的数据集特别有用。

例:

3.2 离散数据进行哑编码:

哑编码(Dummy Encoding)和独热编码(One-Hot Encoding)是常用的特征编码方法,用于将分类变量转换为数值表示。它们在不同的情况下有不同的适用性,选择哪种编码方法取决于数据的特点和机器学习算法的需求。

  1. 哑编码(Dummy Encoding):
    哑编码是一种将分类变量转换为二进制(0和1)表示的编码方法。对于具有k个类别的分类变量,哑编码会创建k-1个二进制特征(或称为哑变量),并用0和1表示类别的存在与否。其中,k-1个特征中的每一个对应于一个类别,而最后一个类别作为参考类别,不需要单独编码。哑编码的主要优点是编码后的特征具有较低的维度,适用于线性模型和一些需要较少特征的机器学习算法。
  2. 独热编码(One-Hot Encoding):
    独热编码是一种将分类变量转换为二进制向量表示的编码方法。对于具有k个类别的分类变量,独热编码会创建k个二进制特征,每个特征对应一个类别,并且只有一个特征的值为1,其余特征的值为0。独热编码的优点是它能够保留所有类别之间的相互独立性,适用于大多数机器学习算法,特别是需要考虑类别之间距离或关系的算法,如决策树、支持向量机等。
python 复制代码
import pandas as pd

# 创建包含分类变量的数据集
data = pd.DataFrame({'颜色': ['红', '蓝', '绿', '红', '绿']})

# 哑编码
dummy_encoded = pd.get_dummies(data['颜色'], prefix='颜色')
print(dummy_encoded)

# 独热编码
one_hot_encoded = pd.get_dummies(data['颜色'], prefix='颜色', drop_first=True)
print(one_hot_encoded)
python 复制代码
颜色_红  颜色_蓝  颜色_绿
0      1      0      0
1      0      1      0
2      0      0      1
3      1      0      0
4      0      0      1

   颜色_蓝  颜色_绿
0      0      0
1      1      0
2      0      1
3      0      0
4      0      1

例题:

1.类别无序:

采用哑编码或者onehot编码

2.类别有序:

直接映射到[0,m]

相关推荐
魔乐社区6 分钟前
GLM-5上线魔乐社区,基于昇腾的模型推理+训练部署教程请查收!
人工智能·开源·大模型
geneculture32 分钟前
化繁为简且以简驭繁:唯文论英汉对照哲学术语49个主义/论
人工智能·融智学的重要应用·哲学与科学统一性·信息融智学·融智时代(杂志)
睡醒了叭1 小时前
coze-工作流-http请求
人工智能·aigc
twilight_4691 小时前
机器学习与模式识别——机器学习中的搜索算法
人工智能·python·机器学习
冰西瓜6002 小时前
深度学习的数学原理(十)—— 权重如何自发分工
人工智能·深度学习·计算机视觉
niuniudengdeng2 小时前
基于时序上下文编码的端到端无文本依赖语音分词模型
人工智能·数学·算法·概率论
Soonyang Zhang3 小时前
flashinfer attention kernel分析
人工智能·算子·推理框架
林籁泉韵73 小时前
2026年GEO服务商推荐:覆盖多场景适配,助力企业AI时代增长
人工智能
Sinosecu-OCR3 小时前
释放数字化力量:智能OCR识别如何重塑现代办公效率
大数据·人工智能
wukangjupingbb3 小时前
人工智能(AI)与类器官(Organoids)技术的结合
人工智能