【大数据面试题】27 讲下Doris的物化视图

一步一个脚印,一天一道面试题。

物化视图概念

物化视图,顾名思义,是将一个查询的结果预先计算并存储为物理表的形式。这意味着,原本需要在运行时动态执行的复杂查询,现在变成了直接从已经计算好的结果表中读取数据,极大地提升了查询速度。它是一种典型的"空间换时间"的策略,牺牲一定的存储空间来换取查询性能的显著提升。

优点

  • 自动维护:Doris自动维护物化视图的数据,无论基础表有新的数据导入还是删除操作,都能确保物化视图与基础表的数据保持一致,无需人工干预。(方便,减少人工)
  • 查询优化 :查询时,Doris能够自动匹配最优的物化视图,并直接从该视图中读取数据,从而跳过不必要的计算步骤,加快查询速度
  • 资源优化 :通过物化视图,可以将计算密集型的操作在数据加载时完成,减少了计算资源消耗

建议使用场景

  • 存储占用小 :这不是必须的,但由于物化视图是需要占用存储空间的,是"空间换时间"的典型,所以尽量使用较少的列(少于10列)。
  • 复杂查询加速 :对于包含多表JOIN或复杂聚合函数的查询,通过预计算结果,物化视图可以提供即时的查询反馈。

物化视图举例

假设有一个大型电商公司的数据库中包含一张名为orders的表,记录了所有订单信息,包括order_id(订单ID)、user_id(用户ID)、product_id(商品ID)、order_date(订单日期)等字段。公司经常需要统计按天的用户购买次数(用户活跃度UV)和商品浏览次数(页面访问量PV)。

为了加速这类固定维度的聚合查询,可以创建一个物化视图。例如,创建一个物化视图daily_uv_pv,预先计算每天每个用户的购买次数和每个商品的浏览次数:

sql 复制代码
CREATE MATERIALIZED VIEW daily_uv_pv
AS
SELECT 
    user_id, 
    product_id, 
    DATE(order_date) AS order_day,
    COUNT(DISTINCT order_id) AS user_activity_count, -- UV计数
    COUNT(order_id) AS product_view_count       -- PV计数
FROM orders
GROUP BY user_id, product_id, DATE(order_date);

这样,当业务方需要查询特定日期的用户活跃度或商品浏览量时,可以直接从daily_uv_pv物化视图中快速获取结果,而不需要每次查询时都去扫描和汇总庞大的原始订单表,大大提高了查询效率。同时,Doris系统会自动管理物化视图的数据同步,确保数据的时效性和准确性。

我是近未来,祝你变得更强!

相关推荐
在未来等你36 分钟前
Elasticsearch面试精讲 Day 17:查询性能调优实践
大数据·分布式·elasticsearch·搜索引擎·面试
大数据CLUB4 小时前
基于spark的澳洲光伏发电站选址预测
大数据·hadoop·分布式·数据分析·spark·数据开发
ratbag6720134 小时前
当环保遇上大数据:生态环境大数据技术专业的课程侧重哪些领域?
大数据
计算机编程小央姐6 小时前
跟上大数据时代步伐:食物营养数据可视化分析系统技术前沿解析
大数据·hadoop·信息可视化·spark·django·课程设计·食物
ajax_beijing6 小时前
zookeeper是啥
分布式·zookeeper·云原生
智数研析社6 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
潘达斯奈基~7 小时前
《大数据之路1》笔记2:数据模型
大数据·笔记
寻星探路7 小时前
数据库造神计划第六天---增删改查(CRUD)(2)
java·大数据·数据库
翰林小院9 小时前
【大数据专栏】流式处理框架-Apache Fink
大数据·flink
孟意昶9 小时前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data