TCP服务器实现将客服端发送的信息广播发送(使用内核链表管理客户端信息)

目录

1.服务器端实现思路

2.服务器端代码

3.客户端代码

4.内核链表代码

5.运行格式

一、服务器端

二、客户端

6.效果


1.服务器端实现思路

  1. Tcp广播服务初始化

  2. 等待客户端连接

  3. 广播发送

2.服务器端代码

cpp 复制代码
#include "list.h"
#include <signal.h>
#define EXIT_MASK "exit"

pthread_mutex_t mutex;
volatile int is_down = 0;

void *Tcp_Pthreads_Broadcast(void *arg)
{
    service_inf_poi sip = (service_inf_poi)arg;
    // 设置线程分离
    if (pthread_detach(pthread_self()) != 0)
    {
        perror("pthread_detach error");
        close(sip->ser_fd);
        pthread_exit((void *)(-1));
    }
    char msg[MSG_MAX_LEN] = "\0";
    while (!is_down)
    {
        memset(msg, 0, sizeof(char) * MSG_MAX_LEN);
        // 保存当前已经连接的客户端的IP地址和套接字
        int cur_client_id = sip->cur_client_node->client_own_id;
        char cur_client_ip_addr[IP_ADDR_LEN] = "\0";
        strcpy(cur_client_ip_addr, sip->cur_client_node->client_ip_addr);
        // 根据套接字读取数据
        int read_ret = read(cur_client_id, msg, MSG_MAX_LEN);
        if (read_ret == -1)
        {
            perror("read error...");
            close(sip->ser_fd);
            pthread_exit((void *)(-1));
        }
        else if (read_ret == 0 || strcmp(msg, EXIT_MASK) == 0)
        {
            printf("%s 断开连接\n", cur_client_ip_addr);
            client_link pos = NULL;
            // 删除该客户端节点,并结束该进程
            list_for_each_entry(pos, &sip->client_list_head->little_pointer_head, little_pointer_head)
            {
                if (pos->client_own_id == cur_client_id) // 根据套接字 号码来找
                {
                    break;
                }
            }
            pthread_mutex_lock(&mutex); // 上锁
            list_del(&pos->little_pointer_head);
            pthread_mutex_unlock(&mutex); // 解锁
            printf("删除节点成功\n\n");

            // 判断当前是否有客户
            if (list_empty(&sip->client_list_head->little_pointer_head) == 1 || sip->client_list_head == NULL || &sip->client_list_head->little_pointer_head == NULL)
            {
                printf("================当前无客户连接======================\n\n");
                printf("服务器端即将断开!!!\n\n");
                // 退出,并释放,结束服务器端
                pthread_mutex_lock(&mutex); // 上锁
                Tcp_Server_Broadcast_Free(sip);
                is_down = 1;
                close(sip->ser_fd);
                pthread_mutex_unlock(&mutex); // 解锁
                if (kill(getpid(), SIGKILL) == -1)
                {
                    perror("kill error...");
                    pthread_exit((void *)-1);
                }
                break;
            }
            else
            {
                pos = NULL;
                printf("=============当前客户端列表==========================\n");
                list_for_each_entry(pos, &sip->client_list_head->little_pointer_head, little_pointer_head)
                {
                    printf("%s\n", pos->client_ip_addr);
                }
                printf("===================================================\n\n");
            }
            break; // 结束当前线程
        }
        else
        {
            printf("%s : %s\n", cur_client_ip_addr, msg);
            // 广播转发
            client_link pos = NULL;
            // 将前16个字节作为ip地址
            char new_msg[MSG_MAX_LEN] = "\0";
            sprintf(new_msg, "%s:【%s】", cur_client_ip_addr, msg);
            printf("new_msg = %s\n", new_msg);
            list_for_each_entry(pos, &sip->client_list_head->little_pointer_head, little_pointer_head)
            {
                if (strcmp(cur_client_ip_addr, pos->client_ip_addr) != 0) // 自己不转发给自己
                {
                    if (write(pos->client_own_id, new_msg, strlen(new_msg)) == -1)
                    {
                        perror("write error...");
                        break;
                    }
                    printf("转发给:%s成功!\n", pos->client_ip_addr);
                }
            }
            printf("\n");
        }
    }
    pthread_exit((void *)0);
    return NULL;
}

void Tcp_Server_Broadcast_Free(service_inf_poi sip)
{
    free(sip);
    return;
}
// 创建新节点
client_link Create_New_Client_Node()
{
    client_link new_client_node = (client_link)malloc(sizeof(client_node));
    if (new_client_node == (client_link)NULL)
    {
        perror("malloc new_big_node error");
        return (client_link)-1;
    }
    memset(new_client_node, 0, sizeof(client_node));
    INIT_LIST_HEAD(&new_client_node->little_pointer_head);
    return new_client_node;
}

// Tcp广播服务初始化
service_inf_poi Tcp_Server_Broadcast_Init(int ser_port)
{
    service_inf_poi sip = (service_inf_poi)malloc(sizeof(service_inf));
    if (sip == (service_inf_poi)NULL)
    {
        perror("malloc error...");
        return (service_inf_poi)-1;
    }
    memset(sip, 0, sizeof(service_inf));
    if ((sip->ser_fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
    {
        perror("socket error...");
        return (service_inf_poi)-1;
    }
    // 创建客户端头结点
    sip->client_list_head = Create_New_Client_Node();
    if (sip->client_list_head == (client_link)-1)
    {
        return (service_inf_poi)-1;
    }
    // 设置基本信息
    struct sockaddr_in ser_inf;
    memset(&ser_inf, 0, sizeof(ser_inf));
    ser_inf.sin_family = AF_INET;
    ser_inf.sin_port = htons(ser_port); // 将小端变成大端
    ser_inf.sin_addr.s_addr = htonl(INADDR_ANY);
    // 绑定
    if (bind(sip->ser_fd, (struct sockaddr *)&ser_inf, sizeof(ser_inf)) == -1)
    {
        perror("bind error...");
        return (service_inf_poi)-1;
    }
    // 监听
    if (listen(sip->ser_fd, CLIENT_MAX_CONNECT_NUM / 4) == -1) // 最大等待队列是CLIENT_MAX_CONNECT_NUM / 4个
    {
        perror("listen error...");
        return (service_inf_poi)-1;
    }

    // 初始化互斥锁
    if (pthread_mutex_init(&mutex, NULL))
    {
        perror("pthread_mutex error...\n");
        return (service_inf_poi)-1;
    }
    return sip;
}

// 等待客户端连接
int Waiting_For_Connnect(service_inf_poi sip)
{
    struct sockaddr_in client_inf;
    int len = sizeof(client_inf);
    while (1)
    {
        memset(&client_inf, 0, len);
        int new_client_fd = accept(sip->ser_fd, (struct sockaddr *)&client_inf, &len);
        if (new_client_fd == -1)
        {
            perror("accept error...");
            return -1;
        }
        printf("%s已经连接服务器\n", inet_ntoa(client_inf.sin_addr));
        // 创建新节点
        client_link new_client_node = Create_New_Client_Node();
        if (new_client_node == (client_link)-1)
        {
            return -1;
        }
        // 将ip和新的套接字 赋值
        new_client_node->client_own_id = new_client_fd;
        strcpy(new_client_node->client_ip_addr, inet_ntoa(client_inf.sin_addr));
        sip->cur_client_node = new_client_node; // 保存当前的结点
        // 将新节点插入到客户端列表中
        list_add_tail(&new_client_node->little_pointer_head, &sip->client_list_head->little_pointer_head);
        printf("添加头结点成功!\n\n");
        printf("======================当前客户端列表=======================\n");
        client_link pos;
        list_for_each_entry(pos, &sip->client_list_head->little_pointer_head, little_pointer_head)
        {
            printf("%s\n", pos->client_ip_addr);
        }
        printf("==========================================================\n\n");
        // 创建线程进行广播发送
        pthread_t pid;
        if (pthread_create(&pid, NULL, Tcp_Pthreads_Broadcast, sip) != 0)
        {
            perror("pthread_create error...");
            return -1;
        }
    }

    return 0;
}

int main(int argc, char *argv[])
{
    if (argc != 2)
        return -1;
    service_inf_poi sip = Tcp_Server_Broadcast_Init(atoi(argv[1]));
    if (sip == (service_inf_poi)-1)
    {
        printf("Tcp服务器初始化失败!\n");
        return -1;
    }
    else
    {
        printf("Tcp服务器初始化成功!正在等待接受数据.......\n");
    }
    Waiting_For_Connnect(sip);
    return 0;
}

3.客户端代码

cpp 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <fcntl.h>
#include <pthread.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <signal.h>

#define IP_ADDR_LEN 16
#define MSG_MAX_LEN 256
#define CLIENT_MAX_CONNECT_NUM 100
#define EXIT_MASK "exit"

volatile int is_over = 0;

int Client_Init(char *server_ip_addr, int server_prot_num);
int Client_Running(int cli_fd);
void *Send_Msg(void *arg);
void *Rec_Msg(void *arg);

void *Send_Msg(void *arg)
{
    int *client_fd = (int *)(arg);
    int cli_fd = *(client_fd);
    printf("Send_msg = %d\n", cli_fd);

    if (pthread_detach(pthread_self()) != 0)
    {
        perror("pthread_detach error");
        close(cli_fd);
        free(client_fd);
        pthread_exit((void *)(-1));
    }
    char msg[MSG_MAX_LEN] = "\0";
    while (!is_over)
    {
        memset(msg, 0, MSG_MAX_LEN);
        printf("请输入要发送的数据:");
        scanf("%s", msg);

        if (write(cli_fd, msg, strlen(msg)) == -1)
        {
            perror("Send_Msg:write error...");
            close(cli_fd);
            free(client_fd);
            pthread_exit((void *)-1);
        }
        if (strcmp(EXIT_MASK, msg) == 0)
        {
            printf("我要断了\n");
            is_over = 1;
            if (kill(getpid(), SIGKILL) == -1)
            {
                perror("kill error...");
                close(cli_fd);
                free(client_fd);
                pthread_exit((void *)-1);
            }
            break;
        }
    }
    close(cli_fd);
    free(client_fd);
    pthread_exit((void *)0);
    return NULL;
}
void *Rec_Msg(void *arg)
{
    int cli_fd = *((int *)arg);
    if (pthread_detach(pthread_self()) != 0)
    {
        perror("pthread_detach error");
        close(cli_fd);
        pthread_exit((void *)(-1));
    }
    char msg[MSG_MAX_LEN] = "\0";
    while (!is_over)
    {
        memset(msg, 0, MSG_MAX_LEN);
        int read_ret = read(cli_fd, msg, MSG_MAX_LEN);
        if (read_ret == -1)
        {
            perror("write error...");
            close(cli_fd);
            pthread_exit((void *)-1);
        }
        else if (read_ret != 0)
        {
            printf("\n%s\n", msg);
        }
    }
    close(cli_fd);
    pthread_exit((void *)0);
    return NULL;
}

int Client_Init(char *server_ip_addr, int server_prot_num)
{
    // 创建套接字
    int cli_fd = socket(AF_INET, SOCK_STREAM, 0);
    if (cli_fd == -1)
    {
        perror("socket error...");
        return -1;
    }
    else
    {
        printf("socket success %d\n", cli_fd);
    }
    struct sockaddr_in cli_inf;
    memset(&cli_inf, 0, sizeof(cli_inf));

    cli_inf.sin_family = AF_INET;
    cli_inf.sin_addr.s_addr = inet_addr(server_ip_addr);
    cli_inf.sin_port = htons(server_prot_num);
    // 连接
    if (connect(cli_fd, (struct sockaddr *)&cli_inf, sizeof(cli_inf)) == -1)
    {
        perror("connect error...");
        close(cli_fd);
        return -1;
    }
    else
    {
        printf("连接成功!\n");
    }
    return cli_fd;
}

int Client_Running(int cli_fd)
{
    int *client_fd = (int *)malloc(sizeof(int));
    *client_fd = cli_fd;
    pthread_t pid_send, pid_rec;
    if (pthread_create(&pid_send, NULL, Send_Msg, client_fd) != 0)
    {
        perror("pthread_create error...");
        return -1;
    }
    if (pthread_create(&pid_rec, NULL, Rec_Msg, client_fd) != 0)
    {
        perror("pthread_create error...");
        return -1;
    }
    pause();
    return 0;
}

// a.out ip port
int main(int argc, char *argv[])
{
    if (argc != 3)
    {
        printf("输入的参数不对!\n");
        return -1;
    }
    int cli_fd = Client_Init(argv[1], atoi(argv[2]));
    printf("Client_Init success %d\n", cli_fd);

    if (cli_fd == -1)
    {
        printf("Client Init error\n");
        return -1;
    }
    if (Client_Running(cli_fd) == -1)
    {
        printf("Client_Running error\n");
        return -1;
    }
    return 0;
}

4.内核链表代码

cpp 复制代码
#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H

#include <stdio.h>
#include <stdbool.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <fcntl.h>
#include <pthread.h>
#include <arpa/inet.h>
#include <netinet/in.h>

#define IP_ADDR_LEN 16
#define MSG_MAX_LEN 256
#define CLIENT_MAX_CONNECT_NUM 100

/*
 * Simple doubly linked list implementation.
 *
 * Some of the internal functions ("__xxx") are useful when
 * manipulating whole lists rather than single entries, as
 * sometimes we already know the next/prev entries and we can
 * generate better code by using them directly rather than
 * using the generic single-entry routines.
 */

#define LIST_HEAD_INIT(name) \
	{                        \
		&(name), &(name)     \
	}

#define LIST_HEAD(name) \
	struct list_head name = LIST_HEAD_INIT(name)

struct list_head
{
	struct list_head *next, *prev;
};

typedef struct big_list_node
{
	int client_own_id;				  // 客户端的套接字
	char client_ip_addr[IP_ADDR_LEN]; // 客户端的ip地址
	struct list_head little_pointer_head;
} client_node, *client_link;

typedef struct tcp_service_inf
{
	int ser_fd;					  // 服务端的套接字
	client_link cur_client_node;  // 存放当前客户端的结点
	client_link client_list_head; // 存放客户端链表的头结点
} service_inf, *service_inf_poi;

client_link Create_New_Client_Node();
service_inf_poi Tcp_Server_Broadcast_Init(int ser_port);
client_link Create_Client_Node();
int Waiting_For_Connnect(service_inf_poi sip);
void Tcp_Server_Broadcast_Free(service_inf_poi sip);
void *Tcp_Pthreads_Broadcast(void *arg);


static inline void INIT_LIST_HEAD(struct list_head *list)
{
	list->next = list; // 游离节点指向小头
	list->prev = list;
}

#ifdef CONFIG_DEBUG_LIST
extern bool __list_add_valid(struct list_head *new,
							 struct list_head *prev,
							 struct list_head *next);
extern bool __list_del_entry_valid(struct list_head *entry);
#else
static inline bool __list_add_valid(struct list_head *new,
									struct list_head *prev,
									struct list_head *next)
{
	return true;
}
static inline bool __list_del_entry_valid(struct list_head *entry)
{
	return true;
}
#endif

/*
 * Insert a new entry between two known consecutive entries.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_add(struct list_head *new,
							  struct list_head *prev,
							  struct list_head *next)
{
	if (!__list_add_valid(new, prev, next))
		return;

	next->prev = new;
	new->next = next;
	new->prev = prev;
	prev->next = new;
}

/**
 * list_add - add a new entry
 * @new: new entry to be added
 * @head: list head to add it after
 *
 * Insert a new entry after the specified head.
 * This is good for implementing stacks.
 */
static inline void list_add(struct list_head *new, struct list_head *head)
{
	__list_add(new, head, head->next);
}

/**
 * list_add_tail - add a new entry
 * @new: new entry to be added
 * @head: list head to add it before
 *
 * Insert a new entry before the specified head.
 * This is useful for implementing queues.
 */
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
	__list_add(new, head->prev, head);
}

/*
 * Delete a list entry by making the prev/next entries
 * point to each other.
 *
 * This is only for internal list manipulation where we know
 * the prev/next entries already!
 */
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
	next->prev = prev;
	prev->next = next;
}

/**
 * list_del - deletes entry from list.
 * @entry: the element to delete from the list.
 * Note: list_empty() on entry does not return true after this, the entry is
 * in an undefined state.
 */
static inline void __list_del_entry(struct list_head *entry)
{
	if (!__list_del_entry_valid(entry))
		return;

	__list_del(entry->prev, entry->next);
}

static inline void list_del(struct list_head *entry)
{
	__list_del_entry(entry);
	entry->next = NULL;
	entry->prev = NULL;
}

/**
 * list_replace - replace old entry by new one
 * @old : the element to be replaced
 * @new : the new element to insert
 *
 * If @old was empty, it will be overwritten.
 */
static inline void list_replace(struct list_head *old,
								struct list_head *new)
{
	new->next = old->next;
	new->next->prev = new;
	new->prev = old->prev;
	new->prev->next = new;
}

static inline void list_replace_init(struct list_head *old,
									 struct list_head *new)
{
	list_replace(old, new);
	INIT_LIST_HEAD(old);
}

/**
 * list_del_init - deletes entry from list and reinitialize it.
 * @entry: the element to delete from the list.
 */
static inline void list_del_init(struct list_head *entry)
{
	__list_del_entry(entry);
	INIT_LIST_HEAD(entry);
}

/**
 * list_move - delete from one list and add as another's head
 * @list: the entry to move
 * @head: the head that will precede our entry
 */
static inline void list_move(struct list_head *list, struct list_head *head)
{
	__list_del_entry(list);
	list_add(list, head);
}

/**
 * list_move_tail - delete from one list and add as another's tail
 * @list: the entry to move
 * @head: the head that will follow our entry
 */
static inline void list_move_tail(struct list_head *list,
								  struct list_head *head)
{
	__list_del_entry(list);
	list_add_tail(list, head);
}

/**
 * list_is_last - tests whether @list is the last entry in list @head
 * @list: the entry to test
 * @head: the head of the list
 */
static inline int list_is_last(const struct list_head *list,
							   const struct list_head *head)
{
	return list->next == head;
}

/**
 * list_empty - tests whether a list is empty
 * @head: the list to test.
 */
static inline int list_empty(const struct list_head *head)
{
	return head->next == head;
}

/**
 * list_empty_careful - tests whether a list is empty and not being modified
 * @head: the list to test
 *
 * Description:
 * tests whether a list is empty _and_ checks that no other CPU might be
 * in the process of modifying either member (next or prev)
 *
 * NOTE: using list_empty_careful() without synchronization
 * can only be safe if the only activity that can happen
 * to the list entry is list_del_init(). Eg. it cannot be used
 * if another CPU could re-list_add() it.
 */
static inline int list_empty_careful(const struct list_head *head)
{
	struct list_head *next = head->next;
	return (next == head) && (next == head->prev);
}

/**
 * list_rotate_left - rotate the list to the left
 * @head: the head of the list
 */
static inline void list_rotate_left(struct list_head *head)
{
	struct list_head *first;

	if (!list_empty(head))
	{
		first = head->next;
		list_move_tail(first, head);
	}
}

/**
 * list_is_singular - tests whether a list has just one entry.
 * @head: the list to test.
 */
static inline int list_is_singular(const struct list_head *head)
{
	return !list_empty(head) && (head->next == head->prev);
}

static inline void __list_cut_position(struct list_head *list,
									   struct list_head *head, struct list_head *entry)
{
	struct list_head *new_first = entry->next;
	list->next = head->next;
	list->next->prev = list;
	list->prev = entry;
	entry->next = list;
	head->next = new_first;
	new_first->prev = head;
}

/**
 * list_cut_position - cut a list into two
 * @list: a new list to add all removed entries
 * @head: a list with entries
 * @entry: an entry within head, could be the head itself
 *	and if so we won't cut the list
 *
 * This helper moves the initial part of @head, up to and
 * including @entry, from @head to @list. You should
 * pass on @entry an element you know is on @head. @list
 * should be an empty list or a list you do not care about
 * losing its data.
 *
 */
static inline void list_cut_position(struct list_head *list,
									 struct list_head *head, struct list_head *entry)
{
	if (list_empty(head))
		return;
	if (list_is_singular(head) &&
		(head->next != entry && head != entry))
		return;
	if (entry == head)
		INIT_LIST_HEAD(list);
	else
		__list_cut_position(list, head, entry);
}

static inline void __list_splice(const struct list_head *list,
								 struct list_head *prev,
								 struct list_head *next)
{
	struct list_head *first = list->next;
	struct list_head *last = list->prev;

	first->prev = prev;
	prev->next = first;

	last->next = next;
	next->prev = last;
}

/**
 * list_splice - join two lists, this is designed for stacks
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice(const struct list_head *list,
							   struct list_head *head)
{
	if (!list_empty(list))
		__list_splice(list, head, head->next);
}

/**
 * list_splice_tail - join two lists, each list being a queue
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 */
static inline void list_splice_tail(struct list_head *list,
									struct list_head *head)
{
	if (!list_empty(list))
		__list_splice(list, head->prev, head);
}

/**
 * list_splice_init - join two lists and reinitialise the emptied list.
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * The list at @list is reinitialised
 */
static inline void list_splice_init(struct list_head *list,
									struct list_head *head)
{
	if (!list_empty(list))
	{
		__list_splice(list, head, head->next);
		INIT_LIST_HEAD(list);
	}
}

/**
 * list_splice_tail_init - join two lists and reinitialise the emptied list
 * @list: the new list to add.
 * @head: the place to add it in the first list.
 *
 * Each of the lists is a queue.
 * The list at @list is reinitialised
 */
static inline void list_splice_tail_init(struct list_head *list,
										 struct list_head *head)
{
	if (!list_empty(list))
	{
		__list_splice(list, head->prev, head);
		INIT_LIST_HEAD(list);
	}
}

// 在stddef.h中
#define offsetof(TYPE, MEMBER) ((size_t) & ((TYPE *)0)->MEMBER)
// 在kernel.h中
#define container_of(ptr, type, member) ({                      \
        const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
        (type *)( (char *)__mptr - offsetof(type,member) ); })

/**
 * list_entry - get the struct for this entry
 * @ptr:	the &struct list_head pointer.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 */
#define list_entry(ptr, type, member) \
	container_of(ptr, type, member)

/**
 * list_first_entry - get the first element from a list
 * @ptr:	the list head to take the element from.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_first_entry(ptr, type, member) \
	list_entry((ptr)->next, type, member)

/**
 * list_last_entry - get the last element from a list
 * @ptr:	the list head to take the element from.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 *
 * Note, that list is expected to be not empty.
 */
#define list_last_entry(ptr, type, member) \
	list_entry((ptr)->prev, type, member)

/**
 * list_first_entry_or_null - get the first element from a list
 * @ptr:	the list head to take the element from.
 * @type:	the type of the struct this is embedded in.
 * @member:	the name of the list_head within the struct.
 *
 * Note that if the list is empty, it returns NULL.
 */
#define list_first_entry_or_null(ptr, type, member) ({        \
	struct list_head *head__ = (ptr);                         \
	struct list_head *pos__ = head__->next;                   \
	pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
})

/**
 * list_next_entry - get the next element in list
 * @pos:	the type * to cursor
 * @member:	the name of the list_head within the struct.
 */
#define list_next_entry(pos, member) \
	list_entry((pos)->member.next, typeof(*(pos)), member)

/**
 * list_prev_entry - get the prev element in list
 * @pos:	the type * to cursor
 * @member:	the name of the list_head within the struct.
 */
#define list_prev_entry(pos, member) \
	list_entry((pos)->member.prev, typeof(*(pos)), member)

/**
 * list_for_each	-	iterate over a list
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 */
#define list_for_each(pos, head) \
	for (pos = (head)->next; pos != (head); pos = pos->next)

/**
 * list_for_each_prev	-	iterate over a list backwards
 * @pos:	the &struct list_head to use as a loop cursor.
 * @head:	the head for your list.
 */
#define list_for_each_prev(pos, head) \
	for (pos = (head)->prev; pos != (head); pos = pos->prev)

/**
 * list_for_each_safe - iterate over a list safe against removal of list entry
 * @pos:	the &struct list_head to use as a loop cursor.
 * @n:		another &struct list_head to use as temporary storage
 * @head:	the head for your list.
 */
#define list_for_each_safe(pos, n, head)                   \
	for (pos = (head)->next, n = pos->next; pos != (head); \
		 pos = n, n = pos->next)

/**
 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 * @pos:	the &struct list_head to use as a loop cursor.
 * @n:		another &struct list_head to use as temporary storage
 * @head:	the head for your list.
 */
#define list_for_each_prev_safe(pos, n, head) \
	for (pos = (head)->prev, n = pos->prev;   \
		 pos != (head);                       \
		 pos = n, n = pos->prev)

/**
 * list_for_each_entry	-	iterate over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry(pos, head, member)               \
	for (pos = list_first_entry(head, typeof(*pos), member); \
		 &pos->member != (head);                             \
		 pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_reverse - iterate backwards over list of given type.
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry_reverse(pos, head, member)      \
	for (pos = list_last_entry(head, typeof(*pos), member); \
		 &pos->member != (head);                            \
		 pos = list_prev_entry(pos, member))

/**
 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 * @pos:	the type * to use as a start point
 * @head:	the head of the list
 * @member:	the name of the list_head within the struct.
 *
 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 */
#define list_prepare_entry(pos, head, member) \
	((pos) ?: list_entry(head, typeof(*pos), member))

/**
 * list_for_each_entry_continue - continue iteration over list of given type
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Continue to iterate over list of given type, continuing after
 * the current position.
 */
#define list_for_each_entry_continue(pos, head, member) \
	for (pos = list_next_entry(pos, member);            \
		 &pos->member != (head);                        \
		 pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Start to iterate over list of given type backwards, continuing after
 * the current position.
 */
#define list_for_each_entry_continue_reverse(pos, head, member) \
	for (pos = list_prev_entry(pos, member);                    \
		 &pos->member != (head);                                \
		 pos = list_prev_entry(pos, member))

/**
 * list_for_each_entry_from - iterate over list of given type from the current point
 * @pos:	the type * to use as a loop cursor.
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate over list of given type, continuing from current position.
 */
#define list_for_each_entry_from(pos, head, member) \
	for (; &pos->member != (head);                  \
		 pos = list_next_entry(pos, member))

/**
 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 */
#define list_for_each_entry_safe(pos, n, head, member)       \
	for (pos = list_first_entry(head, typeof(*pos), member), \
		n = list_next_entry(pos, member);                    \
		 &pos->member != (head);                             \
		 pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_continue - continue list iteration safe against removal
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate over list of given type, continuing after current point,
 * safe against removal of list entry.
 */
#define list_for_each_entry_safe_continue(pos, n, head, member) \
	for (pos = list_next_entry(pos, member),                    \
		n = list_next_entry(pos, member);                       \
		 &pos->member != (head);                                \
		 pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate over list of given type from current point, safe against
 * removal of list entry.
 */
#define list_for_each_entry_safe_from(pos, n, head, member) \
	for (n = list_next_entry(pos, member);                  \
		 &pos->member != (head);                            \
		 pos = n, n = list_next_entry(n, member))

/**
 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
 * @pos:	the type * to use as a loop cursor.
 * @n:		another type * to use as temporary storage
 * @head:	the head for your list.
 * @member:	the name of the list_head within the struct.
 *
 * Iterate backwards over list of given type, safe against removal
 * of list entry.
 */
#define list_for_each_entry_safe_reverse(pos, n, head, member) \
	for (pos = list_last_entry(head, typeof(*pos), member),    \
		n = list_prev_entry(pos, member);                      \
		 &pos->member != (head);                               \
		 pos = n, n = list_prev_entry(n, member))

/**
 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
 * @pos:	the loop cursor used in the list_for_each_entry_safe loop
 * @n:		temporary storage used in list_for_each_entry_safe
 * @member:	the name of the list_head within the struct.
 *
 * list_safe_reset_next is not safe to use in general if the list may be
 * modified concurrently (eg. the lock is dropped in the loop body). An
 * exception to this is if the cursor element (pos) is pinned in the list,
 * and list_safe_reset_next is called after re-taking the lock and before
 * completing the current iteration of the loop body.
 */
#define list_safe_reset_next(pos, n, member) \
	n = list_next_entry(pos, member)

/*
 * Double linked lists with a single pointer list head.
 * Mostly useful for hash tables where the two pointer list head is
 * too wasteful.
 * You lose the ability to access the tail in O(1).
 */

#endif

5.运行格式

一、服务器端

gcc xx.c -pthrad -o s

./s 8888

其中8888是端口号

二、客户端

gcc xxx.c -pthrad -o c

./s 192.xxx.xxx.xxx 8888

第二个参数是:服务器端的ip地址

第三个参数是:端口号

(注意:如果是同一台主机,则端口号不能相同)

6.效果

连接效果

断开效果

相关推荐
半个番茄2 小时前
C 或 C++ 中用于表示常量的后缀:1ULL
c语言·开发语言·c++
前端白袍2 小时前
Nuxt:利用public-ip这个npm包来获取公网IP
网络协议·tcp/ip·npm
zhao3266857513 小时前
如何有效利用数据采集HTTP代理
网络·网络协议·http
单片机社区4 小时前
随笔十七、eth0单网卡绑定双ip的问题
网络·嵌入式硬件·网络协议·udp·智能路由器
安静的做,安静的学5 小时前
网络仿真工具Core环境搭建
linux·网络·网络协议
小度爱学习7 小时前
数据链路层协议
运维·服务器·网络·网络协议·网络安全
我想学LINUX8 小时前
【2024年华为OD机试】 (C卷,200分)- 机器人走迷宫(JavaScript&Java & Python&C/C++)
java·c语言·javascript·python·华为od·机器人
Ciderw9 小时前
TCP三次握手和四次挥手
开发语言·网络·c++·后端·网络协议·tcp/ip·golang
爱吃喵的鲤鱼10 小时前
Linux——网络(udp)
linux·网络·udp
今天_也很困10 小时前
牛客周赛 Round 78 A-C
c语言·开发语言·算法