概述
C++ 11中引入了一项关键特性------右值引用,极大地增强了C++在资源管理、性能优化和表达力方面的能力。通过理解并合理运用右值引用,我们可以编写出更高效、更简洁且不易出错的代码。本文将深入探讨右值引用的概念、工作原理及其在C++编程实践中的应用场景。
右值引用是C++中的一种特殊引用类型,它只能绑定到临时对象或即将销毁的对象上,也就是那些没有命名且不再需要的对象。语法上,右值引用以&&表示,可参考下面的示例代码。
ini
// 右值引用,绑定到字面量整数
int&& nData = 42;
工作原理
理解右值引用是学习"移动语义"的基础,而要理解右值引用,就必须先区分左值与右值。
对左值和右值的一个最常见的误解是:等号左边的就是左值,等号右边的就是右值。左值和右值都是针对表达式而言的,左值是指表达式结束后依然存在的持久对象,右值是指表达式结束时就不再存在的临时对象。一个区分左值与右值的便捷方法是:看能不能对表达式取地址,如果能,则为左值,否则为右值。下面我们结合一些实际例子来进行说明。
ini
int a = 100;
int b = 200;
int *pFlag = &a;
vector<int> vctTemp;
vctTemp.push_back(66);
string str1 = "Hello ";
string str2 = "World";
const int &m = 99;
请问:a、b、a+b、a++、++a、pFlag、*pFlag、vctTemp[0]、100、string("HOPE")、str1、str1+str2、m分别是 左值 还是右值?
1、a和b都是持久对象(可以对其取地址),是 左值 。
2、a+b是临时对象(不可以对其取地址),是右值。
3、a++是先取出持久对象a的一份拷贝,再使持久对象a的值加1,最后返回那份拷贝,而那份拷贝是临时对象(不可以对其取地址),故其是右值。
4、++a则是使持久对象a的值加1,并返回那个持久对象a本身(可以对其取地址),故其是 左值 。
5、pFlag和*pFlag都是持久对象(可以对其取地址),是左值。
6、vctTemp[0]调用了重载的[]操作符,而[]操作符返回的是一个int &,为持久对象(可以对其取地址),是左值。
7、100和string("HOPE")是临时对象(不可以对其取地址),是右值。
8、str1是持久对象(可以对其取地址),是左值。
9、str1+str2是调用了+操作符,而+操作符返回的是一个string(不可以对其取地址),故其为右值。
10、m是一个常量引用,引用到一个右值,但引用本身是一个持久对象(可以对其取地址),为左值。
区分清楚了左值与右值,我们再来看看左值引用。左值引用根据其修饰符的不同,可以分为非常量左值引用和常量左值引用。
非常量左值引用只能绑定到非常量左值,不能绑定到常量左值、非常量右值和常量右值。如果允许绑定到常量左值和常量右值,则非常量左值引用可以用于修改常量左值和常量右值,这明显违反了其常量的含义。如果允许绑定到非常量右值,则会导致非常危险的情况出现。因为非常量右值是一个临时对象,非常量左值引用可能会使用一个已经被销毁了的临时对象。
常量左值引用可以绑定到所有类型的值,包括:非常量左值、常量左值、非常量右值和常量右值。
可以看出,使用左值引用时,我们无法区分出绑定的是否是非常量右值的情况。那么,为什么要对非常量右值进行区分呢?区分出来了,又有什么好处呢?这就牵涉到C++中一个著名的性能问题------拷贝临时对象。考虑下面的示例代码。
arduino
vector<int> GetAllScores()
{
vector<int> vctTemp;
vctTemp.push_back(90);
vctTemp.push_back(95);
return vctTemp;
}
当使用vector vctScore = GetAllScores()进行初始化时,实际上调用了三次构造函数。尽管有些编译器可以采用RVO(Return Value Optimization)来进行优化,但优化工作只在某些特定条件下才能进行。可以看到,上面很普通的一个函数调用,由于存在临时对象的拷贝,导致了额外的两次拷贝构造函数和析构函数的开销。当然,我们也可以修改函数的形式为:void GetAllScores(vector &vctScore),但这并不一定就是我们需要的形式。另外,考虑下面字符串的连接操作:
c
string s1("Hello ");
string s = s1 + "W" + "o" + "r" + "l" + "d";
在对s进行初始化时,会产生大量的临时对象,并涉及到大量字符串的拷贝操作,这显然会影响程序的效率和性能。怎么解决这个问题呢?如果我们能确定某个值是一个非常量右值(或者是一个以后不会再使用的左值),则我们在进行临时对象的拷贝时,可以不用拷贝实际的数据,而只是"窃取"指向实际数据的指针(类似于STL中的auto_ptr,会转移所有权)。C++ 11中引入的右值引用,正好可用于标识一个非常量右值。C++ 11中用&表示左值引用,用&&表示右值引用,比如:int &&a = 10。
右值引用根据其修饰符的不同,也可以分为:非常量右值引用和常量右值引用。
非常量右值引用只能绑定到非常量右值,不能绑定到非常量左值、常量左值和常量右值。如果允许绑定到非常量左值,则可能会错误地窃取一个持久对象的数据,而这是非常危险的;如果允许绑定到常量左值和常量右值,则非常量右值引用可以用于修改常量左值和常量右值,这明显违反了其常量的含义。
常量右值引用可以绑定到非常量右值和常量右值,不能绑定到非常量左值和常量左值(理由同上)。
使用案例
有了右值引用的概念,我们可以用它来实现下面的CMyString类。
arduino
#include <iostream>
using namespace std;
class CMyString
{
public:
// 构造函数
CMyString(const char *pszSrc = NULL)
{
cout << "CMyString(const char *pszSrc = NULL)" << endl;
if (pszSrc == NULL)
{
m_pData = new char[1];
*m_pData = '\0';
}
else
{
m_pData = new char[strlen(pszSrc) + 1];
strcpy(m_pData, pszSrc);
}
}
// 拷贝构造函数
CMyString(const CMyString &s)
{
cout << "CMyString(const CMyString &s)" << endl;
m_pData = new char[strlen(s.m_pData) + 1];
strcpy(m_pData, s.m_pData);
}
// move构造函数
CMyString(CMyString &&s)
{
cout << "CMyString(CMyString &&s)" << endl;
m_pData = s.m_pData;
s.m_pData = NULL;
}
// 析构函数
~CMyString()
{
cout << "~CMyString()" << endl;
delete [] m_pData;
m_pData = NULL;
}
// 拷贝赋值函数
CMyString &operator =(const CMyString &s)
{
cout << "CMyString &operator =(const CMyString &s)" << endl;
if (this != &s)
{
delete [] m_pData;
m_pData = new char[strlen(s.m_pData) + 1];
strcpy(m_pData, s.m_pData);
}
return *this;
}
// move赋值函数
CMyString &operator =(CMyString &&s)
{
cout << "CMyString &operator =(CMyString &&s)" << endl;
if (this != &s)
{
delete [] m_pData;
m_pData = s.m_pData;
s.m_pData = NULL;
}
return *this;
}
private:
char *m_pData;
};
int main()
{
CMyString strText("Hello HOPE");
CMyString strText2;
strText2 = CMyString("BeiJing");
return 0;
}
可以看到,上面我们添加了move版本的构造函数和赋值函数。那么,添加了move版本后,对类的自动生成规则有什么影响呢?唯一的影响就是,如果提供了move版本的构造函数,则不会生成默认的构造函数。另外,编译器永远不会自动生成move版本的构造函数和赋值函数,它们需要你手动显式地添加。
当添加了move版本的构造函数和赋值函数的重载形式后,某一个函数调用应当使用哪一个重载版本呢?下面是按照判决的优先级列出的3条规则。
1、常量值只能绑定到常量引用上,不能绑定到非常量引用上。
2、左值优先绑定到左值引用上,右值优先绑定到右值引用上。
3、非常量值优先绑定到非常量引用上。
当给构造函数或赋值函数传入一个非常量右值时,依据上面给出的判决规则,可以得出会调用move版本的构造函数或赋值函数。而在move版本的构造函数或赋值函数内部,都是直接"移动"了其内部数据的指针。因为它是非常量右值,是一个临时对象,移动了其内部数据的指针不会导致任何问题,它马上就要被销毁了,我们只是重复利用了其内存,这样就省去了拷贝数据的大量开销。
一个需要注意的地方是:拷贝构造函数可以通过直接调用this = s来实现,但move构造函数却不能。这是因为在move构造函数中,s虽然是一个非常量右值引用,但其本身却是一个左值(是持久对象,可以对其取地址),因此调用this = s时,会使用拷贝赋值函数而不是move赋值函数,而这已与move构造函数的语义不相符。要使语义正确,我们需要将左值绑定到非常量右值引用上,C++ 11提供了move函数来实现这种转换,因此我们可以修改为*this = move(s),这样move构造函数就会调用move赋值函数。
应用场景
1、智能指针。
C++ 11标准库中的std::unique_ptr和std::shared_ptr等智能指针利用了右值引用来安全有效地转移所有权。
2、容器。
C++ STL容器,比如:std::vector、std::string等,在C++11之后都开始支持移动构造和移动赋值,从而避免了在添加元素或重新分配内存时不必要的数据拷贝。
3、字符串字面值。
C++ 11中引入了std::string_view,它可以通过右值引用高效地引用字符串字面值,或现有std::string对象的内容,而无需复制。
4、RAII原则强化。
RAII,也就是资源获取即初始化(英文为:Resource Acquisition Is Initialization),是C++中一种重要的资源管理手段。右值引用使资源在生命周期结束时能被自动回收,并允许在对象之间高效地"移动"资源控制权。
总结
右值引用无疑是C++ 11的一项重大革新,它不仅提高了程序的运行效率,也极大地简化了程序员对资源管理的复杂度。掌握这一特性对于写出更现代、更高效的C++代码至关重要。同时,随着C++后续版本的发展,右值引用在标准库中的使用越来越广泛,成为现代C++开发者的必备知识之一。