数据可视化第十天(爬虫爬取某瓣星际穿越电影评论,并且用词云图找出关键词)

开头提醒

本次爬取的是用户评论,只供学习使用,不会进行数据的传播。希望大家合法利用爬虫。

获得数据

python 复制代码
#总程序
import requests
from fake_useragent import UserAgent
import time

fu=UserAgent()

headers={
    'User-Agent':fu.random
}

page_list=range(0,10)
#爬取10页的数据;需要的时间会很久
for page in page_list:
	#这些参数最后是拼接到?后面构成URL的参数
    params={
    'start':20*page,
    'sort':'time'
    }
    url="https://movie.douban.com/subject/1889243/reviews"
    req=requests.get(url,params=params,headers=headers)
    time.sleep(3)
    html=etree.HTML(req.text)#将获得的数据变成HTML格式
    id_list=html.xpath('//div[@class="main review-item"]/@id')#xpath比较容易提取需要的数据,学习也简单
    comment_results=[]
    #评论是折叠的,通过点击超链接,我们会在一个新的连接
    #发现这个评论,读取这个里面的全部评论
    #观察一下url我们就知道如何去读取这个数据了
    for id in id_list:
        url='https://movie.douban.com/review/'+id+'/'
        id_req=requests.get(url,headers=headers)
        id_html=etree.HTML(id_req.text)
        id_comment_list=id_html.xpath('//div[@class="review-content clearfix"]/p/text()')
        comment_results.append(id_comment_list)
        time.sleep(3)
        
    for comment in comment_results:
        with open('/Users/oommnn/Desktop/学习笔记/爬虫项目/星际穿越电影评论.txt','a+',encoding='utf-8') as f:
            #print(str(comment))
            #获得的是list;转为str类型
            #但是有的评论有多个p,不能单纯的只取第一项
                for com in comment:
                    f.write(com)
            
    if req.status_code == 200:
        print(f"爬取第{page}页成功")

            
print("爬取结束")

可视化处理

注:一般形容词可以让我们了解人们对这部电影的评价

python 复制代码
#可视化处理
import jieba.analyse
import wordcloud

with open('你的文件地址','r',encoding='utf-8') as f:
    data=f.read()
    
#a代表形容词
key_list=jieba.analyse.extract_tags(data,topK=100,allowPOS='a')
keys=' '.join(key_list)#合并到适合wordcloud处理的字符串
#collocations:是否找一些常见的词汇组合;这里不需要组合
#比如:我 草 这是一种常见的组合,但是这里不需要
wc=wordcloud.WordCloud(font_path='/System/Library/Fonts/Hiragino Sans GB.ttc',
                      width=800,height=600,collocations=False,max_words=50,background_color='black').generate(keys)
image=wc.to_image()
image.show()
相关推荐
APIshop1 天前
Python 爬虫获取 item_get_web —— 淘宝商品 SKU、详情图、券后价全流程解析
前端·爬虫·python
pingao1413781 天前
物联网赋能供暖:插座式室温采集器,数据驱动高效管理
物联网·信息可视化
Zoey的笔记本1 天前
金融行业数据可视化平台:破解数据割裂与决策迟滞的系统性方案
大数据·信息可视化·数据分析
武藤一雄1 天前
C# 关于多线程如何实现需要注意的问题(持续更新)
windows·后端·microsoft·c#·.net·.netcore·死锁
AC赳赳老秦1 天前
Python 爬虫进阶:DeepSeek 优化反爬策略与动态数据解析逻辑
开发语言·hadoop·spring boot·爬虫·python·postgresql·deepseek
coding消烦员1 天前
在 Windows 内网搭建 Git 仓库:共享普通仓库 vs 中心 bare 仓库
windows·git
泡泡以安1 天前
【爬虫教程】第7章:现代浏览器渲染引擎原理(Chromium/V8)
java·开发语言·爬虫
Dragon水魅1 天前
Fandom Wiki 网站爬取文本信息踩坑实录
爬虫·python
毕设源码-朱学姐2 天前
【开题答辩全过程】以 基于Python语言的疫情数据可视化系统为例,包含答辩的问题和答案
开发语言·python·信息可视化
Benny的老巢2 天前
基于Playwright TypeScript/JavaScript的API调用爬虫成熟方案
javascript·爬虫·typescript·自动化·agent·playwright