深度学习之基于YoloV5人体打架异常行为识别

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

一、项目背景与意义

随着社会的发展和科技的进步,对于公共场所的安全监控需求日益增加。尤其是在一些高人流量的场所,如学校、商场、车站等,打架斗殴等异常行为的发生可能会给人们的生命安全和财产带来威胁。因此,开发一种能够实时监测并识别打架斗殴等异常行为的技术显得尤为重要。基于YOLOv5的人体打架异常行为识别项目旨在利用深度学习技术,实现对人体打架等异常行为的快速、准确识别,为公共场所的安全监控提供有力支持。

二、技术实现

本项目采用YOLOv5算法作为核心技术,通过构建深度神经网络模型,实现对人体打架等异常行为的识别。YOLOv5是一种先进的实时目标检测算法,具有速度快、精度高、易于部署等优点。它采用了基于卷积神经网络的特征提取方法,通过多尺度特征融合和锚框(Anchor Boxes)机制,实现对目标物体的精确定位和分类。

在项目实施过程中,我们首先对监控视频进行预处理,包括视频帧的提取、图像缩放和归一化等操作,以便更好地适应深度学习模型的输入要求。然后,我们将预处理后的视频帧输入到YOLOv5模型中,模型会自动提取图像中的特征,并输出目标物体的位置、类别和置信度等信息。最后,我们根据输出信息判断是否存在打架斗殴等异常行为,并采取相应的措施进行干预和报警。

三、项目特点

实时性:基于YOLOv5的算法具有较快的处理速度,能够实现对监控视频的实时处理和分析。

准确性:YOLOv5算法具有较高的目标检测精度,能够准确识别出人体打架等异常行为。

易于部署:YOLOv5算法可以在多种平台上进行部署,包括PC、服务器和嵌入式设备等,具有较强的可扩展性和可移植性。

智能化:该项目利用深度学习技术实现了对打架斗殴等异常行为的自动识别和报警,提高了监控系统的智能化水平。

四、应用场景

公共场所安全监控:在学校、商场、车站等公共场所安装基于YOLOv5的人体打架异常行为识别系统,可以实时监测并识别打架斗殴等异常行为,保障人们的生命安全和财产安全。

社区治安管理:在社区、小区等区域安装该系统,可以及时发现并处理打架斗殴等违法行为,维护社区治安秩序。

体育赛事安全监控:在体育赛事现场安装该系统,可以实时监测运动员和观众的行为,防止打架斗殴等事件的发生,保障赛事的顺利进行。

二、功能

深度学习之基于YoloV5人体打架异常行为识别

三、系统

四. 总结

总之,基于YOLOv5的人体打架异常行为识别项目利用深度学习技术实现了对打架斗殴等异常行为的快速、准确识别,为公共场所的安全监控提供了有力支持。随着技术的不断发展和完善,该项目将在更多领域得到广泛应用。

相关推荐
zy_destiny8 分钟前
【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点,含创新点Python代码,方便发论文
网络·人工智能·python·深度学习·yolo·计算机视觉·三重注意力
大数据追光猿11 分钟前
【大模型技术】LlamaFactory 的原理解析与应用
人工智能·python·机器学习·docker·语言模型·github·transformer
Start_Present23 分钟前
Pytorch 第七回:卷积神经网络——VGG模型
pytorch·python·神经网络·cnn·分类算法
朴拙数科23 分钟前
1:1精准还原!用Python+Adobe Acrobat DC实现PDF转Word全自动化
python·pdf·word
supermodule23 分钟前
基于flask的一个数据展示网页
后端·python·flask
范哥来了24 分钟前
python文本处理pdfminer库安装与使用
linux·开发语言·python
走在考研路上37 分钟前
python官方文档阅读整理(一)
开发语言·python
sagima_sdu1 小时前
Python实现鼠标点击获取窗口进程信息
开发语言·python·计算机外设
胡耀超1 小时前
5.训练策略:优化深度学习训练过程的实践指南——大模型开发深度学习理论基础
人工智能·python·深度学习·大模型
烂蜻蜓1 小时前
HTML 编辑器推荐与 VS Code 使用教程
前端·python·编辑器·html