【MATLAB源码-第213期】基于matlab的16QAM调制解调系统软硬判决对比仿真,输出误码率曲线对比图。

操作环境:

MATLAB 2022a

1 、算法描述

一、16QAM调制原理

在16QAM(16 Quadrature Amplitude Modulation)调制中,一个符号表示4个比特的数据。这种调制方式结合了幅度调制和相位调制,能够在相同的频谱资源下传输更多的数据。具体来说,16QAM星座图通常为4x4矩阵,每个信号点的实部和虚部的值分别取自集合{-3, -1, 1, 3},从而形成16个不同的信号点,每个点对应一个唯一的4比特二进制序列。

二、信号的生成与调制

在我们的系统中,首先生成一个长度为100000比特的随机二进制数据序列。然后,这个序列被分割成每组4个比特的数据块,每个数据块将映射到一个16QAM符号。具体的映射方式如下:

  1. 前两个比特决定符号的实部:如果前两个比特是11,则实部为+1;如果是10,则实部为+3;如果是01,则实部为-1;如果是00,则实部为-3。
  2. 后两个比特决定符号的虚部:如果后两个比特是11,则虚部为+1;如果是10,则虚部为+3;如果是01,则虚部为-1;如果是00,则虚部为-3。

通过这种方式,我们可以将二进制数据映射到16QAM符号上。

三、加入噪声

信号在实际传输中会受到噪声的影响。为了模拟这种情况,我们引入了AWGN(加性高斯白噪声)信道。在每个信噪比(SNR)水平下,我们将16QAM符号加上对应的高斯噪声,生成接收的符号。

四、软判决与硬判决

在接收到带有噪声的符号后,需要进行解调,将符号还原成二进制数据。解调方式主要有两种:软判决和硬判决。

软判决

软判决通过计算接收符号与星座图中各个信号点的欧氏距离,选择距离最近的信号点来确定原始数据。具体的步骤如下:

  1. 对于每个接收符号,分别计算其与星座图中所有信号点的距离。
  2. 根据距离选择最接近的信号点。
  3. 根据选择的信号点确定二进制数据。

这种方法利用了信号点之间的距离信息,可以更好地抵抗噪声,通常能获得较低的误码率。

硬判决

硬判决则是根据接收符号的实部和虚部分别进行直接判决,不考虑距离信息。具体的步骤如下:

  1. 对于每个接收符号,直接判断其实部和虚部的值。
  2. 根据实部和虚部的范围,确定对应的二进制数据。例如,实部大于等于0且小于2,则前两个比特为11;实部大于等于2,则前两个比特为10,等等。

这种方法简单直接,但在噪声较大时,误码率可能较高。

五、误码率比较

为了比较软判决和硬判决的性能,我们计算了不同信噪比(SNR)水平下的比特误码率(BER)。具体步骤如下:

  1. 对于每个SNR值,加入对应强度的噪声,生成接收符号。
  2. 分别使用软判决和硬判决进行解调,得到解调后的二进制数据。
  3. 将解调后的数据与原始数据进行比较,计算误码率。

实验结果表明,软判决在各个SNR水平下的误码率均低于硬判决,尤其在较低的SNR下,软判决的优势更加明显。

结论

通过以上描述,我们可以看到,16QAM调制方式通过结合幅度和相位调制,在同样的频谱资源下传输更多的数据。加入噪声后,通过软判决和硬判决两种方式进行解调。软判决利用了符号点之间的距离信息,能够更好地抵抗噪声,通常能获得较低的误码率;而硬判决则简单直接,但在噪声较大时,误码率较高。总体而言,软判决在抗噪声性能上优于硬判决。

2 、仿真结果演示

3 、关键代码展示

4 、MATLAB 源码获取

V

点击下方名片

相关推荐
(・Д・)ノ4 分钟前
python打卡day28
开发语言·python
保利九里8 分钟前
java中的方法详解
java·开发语言·python
灏瀚星空19 分钟前
Python标准库完全指南:os、sys与math模块详解与实战应用
开发语言·python·microsoft
坐吃山猪22 分钟前
Python-Flask-Dive
开发语言·python·flask
Chandler2430 分钟前
Go语言 GORM框架 使用指南
开发语言·后端·golang·orm
zimoyin41 分钟前
Java 快速转 C# 教程
java·开发语言·c#
向宇it1 小时前
【unity游戏开发——编辑器扩展】使用MenuItem自定义菜单栏拓展
开发语言·ui·unity·c#·编辑器·游戏引擎
oneDay++1 小时前
# IntelliJ IDEA企业版安装与配置全指南:避坑详解
java·开发语言·经验分享·学习·学习方法
顾子茵1 小时前
c++从入门到精通(五)--异常处理,命名空间,多继承与虚继承
开发语言·c++
北漂老男孩1 小时前
在 Linux 上安装 MATLAB:完整指南与疑难解决方案
linux·运维·matlab