faster_whisper语音识别

faster_whisper语音识别

检测可用设备:list_available_devices()函数

我这边usb摄像头带麦克风的,所以 DEV_index = 8

1 使用 pyaudio 打开音频设备

2 从音频设备读取数据,传递给 faster_whisper 识别

按键 r 录制 s 停止 q退出

test.py

python 复制代码
# from faster_whisper import WhisperModel

# model = WhisperModel("large-v3")

# audio_path= "mlk.flac"

# segments, info = model.transcribe(audio_path)

# for segment in segments:
#         print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))



from faster_whisper import WhisperModel
import numpy as np
import keyboard
import pynput
from pynput.keyboard import Controller, Listener,Key,KeyCode
import time
import pyaudio
import wave

def list_available_devices():
    print("Available input devices:")
    p = pyaudio.PyAudio()
    for i in range(p.get_device_count()):
        device_info = p.get_device_info_by_index(i)
        if device_info['maxInputChannels'] > 0:  # Check if it's an input device
            print(f"{i}: {device_info['name']}")
    p.terminate()


# List available devices
list_available_devices()


# Available input devices:
# 5: USB Audio: #1 (hw:2,1)
# 6: USB Audio: #2 (hw:2,2)
# 8: aoni webcam A20: USB Audio (hw:3,0)
# 9: pulse
# 10: default

# Replace with the device index you identified by run list_available_devices()
DEV_index = 8  # Replace with your actual device index


class VoiceRecorder:
    def __init__(self, channels=1, rate=16000, format=pyaudio.paInt16):
        self.p = pyaudio.PyAudio()
        self.model = WhisperModel("large-v3")
        self.CHANNELS = channels
        self.RATE = rate
        self.FORMAT = format

    def record(self, seconds=5):
        """
        记录指定秒数的音频。
        """
        CHUNK = 1024
        
        try:
            stream = self.p.open(format=self.FORMAT,
                                channels=self.CHANNELS,
                                rate=self.RATE,
                                input=True,
                                input_device_index=DEV_index,
                                frames_per_buffer=CHUNK)
            print("开始录音...")
            frames = []
            
            for i in range(0, int(self.RATE / CHUNK * seconds)):
                data = stream.read(CHUNK)
                frames.append(data)
                
            print("录音结束.")
        except Exception as e:
            print(f"录音时发生错误:{e}")
            return None
        finally:
            stream.stop_stream()
            stream.close()
        
        return b''.join(frames)

    def transcribe_audio(self, audio_data):
        """
        将音频数据转换为文本。
        """
        try:
            audio_np = np.frombuffer(audio_data, dtype=np.int16)
            if self.CHANNELS > 1:
                audio_np = audio_np.reshape((-1, self.CHANNELS)).mean(axis=1)
            audio_normalized = np.float32(audio_np) / 32768.0
            
            segments, _ = self.model.transcribe(audio_normalized, language='zh', beam_size=5)
            return [segment.text for segment in segments]
        except Exception as e:
            print(f"转录音频时发生错误:{e}")
            return None

    def close(self):
        """
        关闭PyAudio。
        """
        self.p.terminate()

def main():
    global recorder
    global listener
    recorder = VoiceRecorder()

    listener = Listener(
        on_press=on_press
    )
    listener.start()
    listener.join()


def on_press(key:KeyCode):
    print(type(key))
    if key.char == 'r':
        print("开始录音...")
        audio_data = recorder.record()
        if audio_data is not None:
            transcripts = recorder.transcribe_audio(audio_data)
            for text in transcripts:
                print(text)
            print("录音结束.")
    elif key.char == 's':
        print("停止录音.")
    elif key.char == 'q':
        print("退出程序.")
        listener.stop()
        recorder.close()

if __name__ == "__main__":
    main()
相关推荐
Luke Ewin2 天前
内网私有化分布式集群部署语音识别接口
人工智能·分布式·语音识别·asr·funasr·通话语音质检·区分说话人
程序员小赵同学4 天前
Spring AI Alibaba语音合成实战:从零开始实现文本转语音功能
人工智能·spring·语音识别
力江4 天前
攻克维吾尔语识别的技术实践(多语言智能识别系统)
人工智能·python·自然语言处理·语音识别·unicode·维吾尔语
ZEGO即构开发者5 天前
【ZEGO即构开发者日报】Soul AI Lab开源播客语音合成模型;腾讯混元推出国内首个交互式AI播客;ChatGPT Go向用户免费开放一年......
人工智能·aigc·语音识别·实时音视频
EVERSPIN6 天前
什么是离线语音识别芯片(离线语音识别芯片有哪些优点)
人工智能·语音识别·语音识别芯片·离线语音识别芯片
周杰伦_Jay7 天前
【网络编程、架构设计与海量数据处理】网络编程是数据流转的血管,架构设计是系统扩展的骨架,海量数据处理是业务增长的基石。
网络·golang·实时互动·云计算·腾讯云·语音识别
专注VB编程开发20年7 天前
Microsoft Speech TTS微软语音识别ISpeechRecoGrammar,ISpeechRecoResult
语音识别·tts·speech·语音朗读
2401_841495647 天前
【语音识别】混合高斯模型
人工智能·python·算法·机器学习·语音识别·gmm·混合高斯模型
小鱼儿电子8 天前
44-基于ZigBee和语音识别的智能家居控制系统设计与实现
智能家居·语音识别·zigbee·语音控制
2401_841495648 天前
Windows 系统中ffmpeg安装问题的彻底解决
windows·python·ffmpeg·bug·语音识别·下载·安装步骤